簡易檢索 / 詳目顯示

研究生: 林韋宏
Wei-Hung Lin
論文名稱: 基於顯著差異數位浮水印技術之研究
Digital Watermarking Research Based on Significant Difference
指導教授: 洪西進
Shi-Jinn Horng
口試委員: 李祖添
Tsu-Tian Lee
謝文雄
Wen-Shyong Hsieh
陳健輝
Gen-Huey Chen
廖弘源
Hong-Yuan Liao
張隆紋
Long-Wen Chang
鄭有進
Yu-Chin Cheng
鍾國亮
Kuo-Liang Chung
李漢銘
Hahn-Ming Lee
學位類別: 博士
Doctor
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 140
中文關鍵詞: 小波轉換重要係數非重要係數盲目浮水印顯著差異
外文關鍵詞: wavelet transform, significant coefficients, insignificant coefficients, watermark, blind
相關次數: 點閱:229下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出幾種以離散小波轉換為基礎的盲目浮水印技術。在浮水印技術的研究中,嵌入浮水印後的影像品質與浮水印的強韌性一直是在這個領域研究的課題。將浮水印藏在影像頻率域中的低頻帶的重要係數,經研究可使浮水印較具強韌性來抵抗外部影像處理攻擊,但也因此犧牲影像的品質。除此之外,這些被選擇的重要係數在經量化後,很難得知其原來係數大小的排列,進而不需原始影像或浮水印的輔助以盲目的方式取出浮水印。在此篇論文中我們將分別提出以區塊(block-based)或小波樹(wavelet tree)的方式將浮水印藏入各區域中的兩個重要係數中,藉由調整的兩個重要係數間的差異來表示二元浮水印。因為此統計上差異,浮水印可以盲目被取出而不需原始影像或浮水印的輔助。我們也突破以往將浮水印藏入重要係數的方式,提出一種將浮水印藏入在小波樹中最不重要係數的方法來提高嵌入浮水印後影像的品質。我們利用兩個最不重要的係數的差異來表示嵌入浮水印的位元。因為小波樹中的重要係數與非重要係數皆可被使用來嵌入浮水印。我們更進而利用隨機選取重要或不重要係數來決定浮水印嵌入的位置,來提高浮水印的安全性;此外,也可同時量化重要與不重要係數的方式將小波樹一次藏入二個浮水印位元來提高可嵌入浮水印的數量。從實驗的結果可以證明,我們提出的方法具有好的強韌性與影像品質。


In this dissertation we propose some watermarking methods based on discrete wavelet transform (DWT). In the previous work, the quality of watermarked image and robustness of watermark are the topic for study in the field of watermarking. The watermark is embedded in the significant coefficient in the low frequency was found to be robust, but the watermarked image is easily visible distortion. Besides that, it’s very hard to know the permutation of original coefficients after these important coefficients were quantified. Therefore it can extract the watermark by using the blindness method and does not require the original image or the help of watermark.
In this dissertation, we first present some block-based and wavelet tree based watermarking methods. The watermark is embedded into the two localize significant coefficients. The difference between these two localize significant coefficients is modified to represent a binary watermark. Owing to the statistical difference between the two localize significant coefficients, a watermark can be effectively extracted without requiring any original image of watermark. We also propose a watermarking method that embeds the watermark into the insignificant coefficient. The method is different from previous researches which used significant coefficients to embed a watermark and it can improve the quality of the watermarked image. Since the watermark can be embedded into either significant or insignificant coefficient, we further use different combinations of significant and insignificant coefficients to embed a watermark bit to increase the security of watermarking. Furthermore, we utilize both significant and insignificant at the same time to embed two watermark bits to achieve high embedding capacity. Experimental results show that the watermarked image looks visually identical to the original and the watermark can be effectively extracted upon image processing attack.

Contents 論文摘要-------------------I ABSTRACT-------------------III 誌 謝-------------------V LIST OF FIGURES------------ X LIST OF TABLES------------- XV CHAPTER 1 INTRODUCTION------ 1 CHAPTER 2 OVERVIEW THE WAVELET TREE AND THE CRITERIA OF EVALUATION OF THE WATERMARKING-------8 2.1 Wavelet tree------ 8 2.2 Evaluation of the quality of an image-------- 9 2.3 Watermark verification----- 10 CHAPTER 3 AN EFFICIENT WATERMARKING METHOD BASED ON SIGNIFICANT DIFFERENCE OF WAVELET COEFFICIENT QUANTIZATION-------------------------------- 12 3.1 Introduction------ 12 3.2 Significant difference of wavelet coefficient quantization------ 13 3.2.1 The preprocess------ 14 3.2.2 Watermark embedding---------- 18 3.2.3 The decoder design----------- 21 3.2.4 Watermark extraction ---------30 3.3 Experimental results------- 31 CHAPTER 4 A BLIND WATERMARKING METHOD USING MAXIMUM WAVELET COEFFICIENT QUANTIZATION-------------------- 41 4.1 Introduction------ 41 4.2 The scan order of wavelet coefficients and the block-base significant coefficient----------- 41 4.2.1 The scan order of wavelet coefficients--------- 41 4.2.2 The block-based significant coefficient-------- 43 4.3 Maximum wavelet coefficient quantization----- 45 4.3.1 The preprocess--------------- 45 4.3.2 Watermark embedding---------- 46 4.3.3 The decoder design----------- 49 4.3.4 Watermark extraction--------- 50 4.4 Experimental results------- 51 4.4.1 Experiment analysis---------- 55 CHAPTER 5 AN EFFICIENT WAVELET-TREE-BASED WATERMARKING METHOD----------- 57 5.1 Introduction------ 57 5.2 Watermarking by quantization of wavelet tree--57 5.2.1 The preprocess------ 59 5.2.2 Watermark embedding---------- --60 5.3 Design of watermark decoder --64 5.3.1 The decoder design------------- 64 5.3.2 Watermark extraction -----------70 5.4 Experimental results---------71 5.4.1 Experiment analysis------------77 CHAPTER 6 A WAVELET-TREE-BASED WATERMARKING METHOD USING DISTANCE VECTOR OF BINARY CLUSTER---79 6.1 Introduction------ 79 6.2 Watermarking by quantization of wavelet trees-80 6.2.1 The preprocess-------80 6.2.2 Watermark embedding--82 6.3 Design of watermark decoder-------------------83 6.3.1 Watermark extraction ----------------------------95 6.4 Experimental results--------------------------95 6.4.1 Experiment analysis---------------------------- 100 CHAPTER 7 DISTANCE BASED INFORMATION HIDING ON WAVELET TRANSFORM----------------------------------- 102 7.1 Introduction------ 102 7.2 Watermarking by quantization of wavelet trees-102 7.2.1 Significant coefficients quantization (SCQ)---- 103 7.2.2 Insignificant coefficient quantization (ICQ)----105 7.2.3 Hybrid coefficient quantization (HCQ)-----------106 7.2.4 High capacity hiding (HCH)----------------------106 7.3 Design of watermark decoder------------------ 107 7.3.1 Watermark extraction--------------------------- 107 7.4 Experimental results------------------------- 108 7.4.1 Performance test------------------------------- 112 7.4.2 Experiment analysis---------------------------- 116 CHAPTER 8 CONCLUSIONS--------------------------------- 118 REFERENCES ------------------------------------------- 120

[1] M. J. Tsai, K. Y. Yu, and Y. Z. Chen, “Wavelet packet and adaptive spatial transformation of watermark for digital images authentication,” in Proc. IEEE ICIP, Vancouver, BC, 2000, pp. 450-453.
[2] H. Inoue, A. Miyazaki, A. Yamamoto et al., “A digital watermark based on the wavelet transform and its robustness on image compression,” in Proc. IEEE ICIP, Chicago, 1998, pp. 391-395.
[3] E. Ganic, and A. M. Eskicioglu, “Robust DWT-SVD domain image watermarking: embedding data in all frequencies ” in Int. Multimedia Conf. Multimedia and security, Magdeburg, 2004 pp. 166-174.
[4] T. H. Chen, G. Horng, and W. B. Lee, “A publicly verifiable copyright-proving scheme resistant to malicious attacks,” IEEE Trans. Industrial Electron., vol. 52, no. 1, pp. 327-334, Feb. 2005.
[5] R. Dugad, K. Ratakonda, and N. Ahuja, “A new wavelet-based scheme for watermarking images,” in IEEE ICIP, Chicago, IL, 1998, pp. 419-423.
[6] D. P. Mukherjee, S. Maitra, and S. T. Acton, “Spatial domain digital watermarking of multimedia objects for buyer authentication,” IEEE Trans. Multimedia, vol. 6, no. 1, pp. 1-15, Feb. 2004.
[7] N. Nikolaidis, and I. Pitas, “Robust image watermarking in the spatial domain,” Signal Processing, vol. 66, pp. 385-403, 1998.
[8] R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum communications--A tutorial,” IEEE Trans. Commun., vol. 30, no. 5, pp. 855-884, 1982.
[9] A. K. Mahmood, and A. Selin, “Spatially adaptive wavelet thresholding for image watermarking,” in Proc. IEEE ICME, Toronto, 2006, pp. 1597-1600.
[10] J. R. Hernandez, M. Amado, and F. Perez-Gonzalez, “DCT-domain watermarking techniques for still images: detector performance analysis and a new structure,” IEEE Trans. Image Processing, vol. 9, no. 1, pp. 55-68, Jan. 2000.
[11] I. J. Cox, J. Kilian, T. Leighton et al., “Secure spread spectrum watermarking for images, audio and video,” in Proc. IEEE ICIP, Lausanne, 1996, pp. 243-246.
[12] I. J. Cox, J. Kilian, F. T. Leighton et al., “Secure spread spectrum watermarking for multimedia,” IEEE Trans. Image Processing, vol. 6, no. 12, pp. 1673-1687, Dec. 1997.
[13] C. I. Podilchuk, and W. Zeng, “Image-adaptive watermarking using visual models,” IEEE J. Sel. Areas Commun., vol. 16, no. 4, pp. 525-539, May 1998.
[14] H. J. Wang, P. C. Su, and C. C. J. Kuo, “Wavelet-based digital image watermarking,” Optics Express, vol. 3, no. 12, pp. 491-496, Dec. 1998.
[15] H. J. Wang, and C. C. J. Ko, “High fidelity image compression with multithreshold wavelet coding (MTWC),” in SPIE's Annual Meeting-Application of Digital Image Processing XX, San Diego, 1997, pp. 383-392.
[16] M. Hsieh, D. Tseng, and Y. Huang, “Hiding digital watermarks using multiresolution wavelet transform,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 875-882, Oct. 2001.
[17] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Signal Processing. [see also IEEE Trans. Acoust., Speech, Signal Processing], vol. 41, no. 12, pp. 3445-3462, Dec. 1993.
[18] J. Huang, and C. Yang, “Image digital watermarking algorithm using multiresolution wavelet transform,” in Proc. IEEE Int. Conf. Systems, Man and Cybernetics, , 2004, pp. 2977-2982.
[19] F. Khelifi, A. Bouridane, F. Kurugollu et al., “An improved wavelet-based image watermarking technique,” in Proc. IEEE AVSS, Como, 2005, pp. 588-592.
[20] B. K. Lien, and W. H. Lin, “A watermarking method based on maximum distance wavelet tree quantization,” in Proc. 19th Conf. Computer Vision, Graphics and Image Processing, 2006, pp. 269-276.
[21] E. Li, H. Liang, and X. Niu, “Blind image watermarking scheme based on wavelet tree quantization robust to geometric attacks,” in Proc. IEEE WCICA, 2006, pp. 10256-10260.
[22] S. H. Wang, and Y. P. Lin, “Wavelet tree quantization for copyright protection watermarking,” IEEE Trans. Image Processing, vol. 13, no. 2, pp. 154-165, Feb. 2004.
[23] G. C. Langelaar, and R. L. Lagendijk, “Optimal differential energy watermarking of DCT encoded images and video,” IEEE Trans. Image Processing, vol. 10, no. 1, pp. 148-158, Jan. 2001.
[24] Y. Hu, W. Liu, Y. Deng et al., “Readable watermarking algorithm based on wavelet tree quantization,” in Proc. IEEE ICCCAS, 2004, pp. 579-583.
[25] G. D. Wu, and P. H. Huang, “Image watermarking using structure based wavelet tree quantization,” in ICIS, Melbourne, Australia, 2007, pp. 315-319.
[26] C. Temi, S. Choomchuay, and A. Lasakul, “A robust image watermarking using multiresolution analysis of wavelet,” in Proc. IEEE ISCIT, 2005, pp. 623-626.
[27] H. J. Wang, and H. C. C. J., “A multi-threshold wavelet coder (MTWC) for high fidelity image compression,” in Proc. IEEE ICIP, Santa Barbara, 1997, pp. 652-655.
[28] M. Aboofazeli, G. Thomas, and Z. Moussavi, “A wavelet transform based digital image watermarking scheme,” in Conf. Electrical and Computer Engineering, Canadian, 2004, pp. 823-826.
[29] F. Davoine, “Comparison of two wavelet based image watermarking schemes,” in Int. Conf. Image Processing, Vancouver, 2000, pp. 682-685.
[30] S. Kimpan, A. Lasakul, and S. Chitwong, “Variable block size based adaptive watermarking in spatial domain,” in Proc. IEEE ISCIT, 2004, pp. 374-377.
[31] D. Kundur, and D. Hatzinakos, “Digital watermarking using multiresolution wavelet decomposition,” in Proc. IEEE ICASSP, Seattle, 1998, pp. 2969-2972.
[32] J. R. Kim, and Y. S. Moon, “A robust wavelet-based digital watermarking using level-adaptive thresholding,” in Proc. IEEE ICIP, Kobe, 1999, pp. 226-230.
[33] S. G. Kwon, S. W. Ban, I.-S. Ha et al., “Highly reliable digital watermarking using successive subband quantization and human visual system,” in Proc. IEEE ISIE, Pusan, 2001, pp. 205-209.
[34] Y. P. Wang, M. J. Chen, and P. Y. Cheng, “Robust image watermark with wavelet transform and spread spectrum techniques,” in Thirty-Fourth Asilomar Conf. Signals, Systems and Computers, Pacific Grove, 2000, pp. 1846-1850.
[35] A. Lumini, and D. Maio, “A wavelet-based image watermarking scheme,” in Int. Conf. Information Technology:Coding and Computing, 2000, pp. 122-127.
[36] F. A. P. Petitcolas, Weakness of existing watermark scheme, 1997 [online] Available:http://www.petitcolas.net/fabien/watermarking/stirmark/index.html.
[37] Ulead system, Inc., PhotoImpact 11 software
[38] R. C. Gonzalez, and R. E. Woods, Digital image processing 2ed.: Prentice Hall, 2002.
[39] K. Byun, S. Lee, and H. Kim, “A watermarking method using quantization and statistical characteristics of wavelet transform,” in Proc. IEEE PDCAT, 2005, pp. 689-693.
[40] V. M. Potdar, S. Han, and E. Chang, “A survey of digital image watermarking techniques,” in Proc. IEEE INDIN 2005, pp. 709-716.
[41] A. S. Lewis, and G. Knowles, “Image compression using the 2-D wavelet transform,” IEEE Trans. on Image Processing, vol. 1, no. 2, pp. 244-250, Apr. 1992.
[42] USC SIPI----The USC-SIPI Image Database. [Online]; http://sipi.usc.edu/services/database/Database.html.

QR CODE