簡易檢索 / 詳目顯示

研究生: 林登峰
Deng-Fong Lin
論文名稱: 應用於表面電漿共振及有機發光二極體的微透鏡陣列及系統校正
Micro lens array and system correction applied to surface plasma resonance and organic light-emitting diodes
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
Qun Qiu
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 118
中文關鍵詞: 表面電漿共振微透鏡陣列
外文關鍵詞: surface plasma resonance, Micro lens array
相關次數: 點閱:245下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近二十年來,表面電漿共振生物感知器(Surface plasmon resonance biosensor, SPR biosensor),一種利用光學技術設計的生物感測器,其利用特定分子與待測分子在介面專一性的交互作用,而產生介面特性改變的方式,來分析生物分子間的交互作用。
在本論文之中會一一介紹自行設計之表面電漿共振生物感知器,從其優點至缺點作基本的介紹。並會討論與其相關的解決辦法或是補償之處。
文中最主要的相關解決辦法是使用能降低光源發散角的微透鏡陣列(Micro lens array, MLA)來改善其光路的準直度及降低雜散光的發生,並對於MLA使用實測後的結論作各種面向的探討,其中包含了對MLA的建模及模擬方法、使用上遇到的困難。最後則是由上述綜合所得出的結論,作一系列的修正及改進。
對系統作一個最後的總整理後,將從系統的光路校正、設計方向、微流道改良等等,給出未來所需要加強的地方。


In the past two decades, Surface plasmon resonance, SPR biosensor, a biosensor designed using optical technology, utilizes the interaction of specific molecules with the molecules to be tested in the interface. The way in which changes in interface properties are produced to analyze interactions between biomolecules.
In this paper, we will introduce the surface-plasma resonance biosensor designed by ourselves, from the advantages to the lack of basic introduction. It will discuss the solutions or compensation related to it.
The most important solution in this paper is to use a Micro Lens Array, MLA that reduces the divergence angle of the light source to improve the collimation of the optical path and reduce the occurrence of stray light, and to make various conclusions for the MLA using the measured results. The oriented discussion includes the modeling and simulation methods of MLA and the difficulties encountered in its use. Finally, the conclusions from the above synthesis are a series of corrections and improvements.
After a final finalization of the system, the optical path correction, design direction, microchannel improvement, etc. of the system will be given to the future needs to be strengthened.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 - 1 - 1-1 前言 - 1 - 1-2 文獻回顧 - 2 - 1-2-1 光源矯正器 - 3 - 1-2-2 微透鏡陣列(Micro lens array,MLA)的發展史 - 3 - 1-3 研究動機及目的 - 5 - 1-4 論文架構 - 7 - 第二章 研究理論基礎 - 8 - 2-1 幾何光學理論與基礎物理 - 8 - 2-1-1光的直線傳播定律 - 8 - 2-1-2光的獨立傳播定律 - 8 - 2-1-3光的反射定律和折射定律 - 9 - 2-1-4 近朗伯光源(Lambertian source) - 10 - 2-1-5 橫向電磁波(Transverse Electromagnetic Waves, TEM) - 11 - 2-1-6 橫向電波(Transverse Electric Waves, TE mode) - 12 - 2-1-7 橫向磁波(Transverse Magnetic Waves, TM mode) - 12 - 2-1-8漸逝波(Evanescent Wave) - 12 - 2-2表面電漿共振原理 - 13 - 2-2-1表面電漿共振的介紹 - 13 - 2-2-2觸發表面電漿共振的方式 - 16 - 2-3稜鏡耦合法 - 21 - 2-4 光學膜介紹 - 22 - 2-5 擴散模 - 23 - 2-6背光模組 - 23 - 2-7 光學膜介紹及光源矯正器 - 24 - 2-7-1 增亮膜(Brightness Enhancement Film) - 24 - 2-7-2反射式偏光增光片(DBEF) - 26 - 2-7-3 微透鏡陣列 - 27 - 2-8 微陣列透鏡(MLA)光學設計[45] - 28 - 2-8-1 MLA之厚度(d) - 28 - 2-8-2 MLA之折射角(θg) - 28 - 2-8-3發散角(θff) - 30 - 2-8-4設計概念 - 31 - 2-8-5預期效能 - 32 - 第三章 實驗方法及設備 - 33 - 3-1 OLED板及光學膜應用 - 33 - 3-2 稜鏡及感測晶片 - 36 - 3-2-1 金膜鍍製 - 37 - 3-3 微流道系統設計及製作 - 39 - 3-4 有機發光二極體表面共振系統設計 - 43 - 3-5 表面電漿共振量測方法 - 45 - 3-6 設備及模擬軟體 - 46 - 3-6-1 蒸鍍設備 - 46 - 3-6-2 蒸鍍材料 - 47 - 3-6-3 光學量測軟體 - 48 - 3-6-4 金膜厚度模擬軟體 - 49 - 3-6-5 3D立體建模軟體 - 51 - 3-6-6 三維光路模擬軟體 - 52 - 3-7 微透鏡陣列製作及架設 - 55 - 3-7-1斯乃爾定律 - 56 - 3-7-2針孔板製作 - 59 - 3-7-3 MLA整體貼合 - 62 - 3-7-4 安裝於SPR系統 - 63 - 第四章 結果與討論 - 65 - 4-1 微透鏡陣列(Micro Lens Array,MLA) - 65 - 4-1-1 格點光源 - 65 - 4-1-2 微陣列透鏡光路模擬 - 66 - 4-1-3 MLA在各個面上的光出射角 - 68 - 4-1-4 MLA搭配BEF使用 - 69 - 4-1-5 MLA搭配BEF及矩形光罩 - 70 - 4-2 現有機台的模擬 - 72 - 4-3 現有機台與搭配MLA的機台比較 - 73 - 4-4 現有機台與搭配MLA的SPR測試 - 74 - 4-4-1 實驗結果討論 - 76 - 4-4-2 接收端光線分析 - 77 - 4-4-3 雜散光分析 - 78 - 4-4-4 訊號接收分析 - 81 - 4-5 系統位置校正 - 83 - 4-5-1 使用垂直光校正系統各部分的位置 - 84 - 4-5-2 微流道以壓克力製作 - 86 - 4-6 總結 - 89 - 4-6-1 以光纖接頭直接作為接收端 - 89 - 4-6-2 於光纖前加一套筒狀孔徑光欄 - 91 - 4-6-3 於光纖前加一實心套筒狀孔徑光欄 - 92 - 4-6-4 原型機台於接收面上的坎德拉圖 - 93 - 4-6-5 入射光線對於準直光的夾角比較 - 94 - 第五章 結論 - 95 - 參考文獻 - 98 -

[1] "Incorporating Biotechnology into the Classroom What is Biotechnology?", from the curricula of the 'Incorporating Biotechnology into the High School Classroom through Arizona State University's BioREACH program', accessed on October 16, 2012). Public.asu.edu. Retrieved on 2013-03-20.
[2] Z. Han, E. Forsberg, S. He, Surface plasmon Bragg gratings formed in
metal-insulator-metal waveguides, IEEE Photonics Technology Letters, 19,91-93, 2007.
[3] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Phys. Reports 408, 131,2005.
[4] D. A. Schultz, Current Opinion in Biotechnology 14, 2003.
[5] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum, "Proceedings of the Physical Society of London, vol. 18, pp. 269-275, 1902.
[6] R.H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films, "Physical Review, vol. 106, pp. 874-881, 1957.
[7] C.J. Powell and J. B.Swan, "Origin of the characteristic electron energy losses in aluminum, "Physical Review, vol. 115, pp. 869-875, 1959.
[8] T. Turbadar, "Complete absorption of light by thin metal films, "Proceedings of the Physical Society, vol. 73, pp. 40-44, 1959.
[9] E.A. Stern and R. A. Ferrell, "Surface plasma oscillations of a degenerate electron gas, "Physical Review, vol. 120, pp. 130-136, 1960.
[10] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, "Zeitschrift fur Physik, vol. 216, pp. 398-410, 1968.
[11] R. H. Z. N. Kreschmann E. pp. 2135-2136, 1968.
[12] H. Guner, E. Ozgur, G. Kokturk, M. Celik, E. Esen, A.E. Topal, S. Ayas, Y. Uludag, C. Elbuken, A. Dana, A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection, Sensors and Actuators B:
Chemical, 239, 571-577, 2017.
[13] R. Slavik and J. Homola, "Optical multilayers for LED-bassed surface plasmon resonance sensors, "Applied Optics, vol. 45, pp. 3752-3759, 2006.
[14] 林進堂, ''自由曲面法於LED準直透鏡之設計'',電機工程學系碩士,國立彰化師範大學,2009.
[15] 廖文正, ''微透鏡陣列設計配置於太陽能電池模擬分析'',電機工程學系碩士在職專班,大葉大學,2007.
[16] 沈煜勝, ''微成型於微透鏡陣列之研究'',機械系碩士班,龍華科技大學,2005.
[17] Herzig H.P.(ed), 1997 Micro-optics,London: Taylor and Francis.
[18] A. David and J. Rosen, “Microlens array imaging hidden objects for medical applications”,IEEE International Conference on Electroncis&Circuits System,pp. 431-434, Dec 2004.
[19] E. Oda, K.Orihara, T.Tanaka, T.Kamata and Y.Ishihara, “A 1920(H)×1035(V)pixel high-definition CCD image sensor”,IEEE Transactions on Electron Devices,Vol.36,pp.46-53,Jan 1989.
[20] K. Hogari,S.Tetsutani, Z.Jian,F.Yamamoto and K.Sato, “Optical-transmission characteristics of optical-fiber cables and installed optical-fiber cable networksfor WDM system Lightwave Technology”,Journal of Lightwave Technology,Vol. 21,pp.540-545,Feb 2003.
[21] C.-C.Chen,H.-S.Nien,C.-L.Shen and T.-F.Wu, “Design and development of digital control multi-lamp back-light modules for TFT-LCD TV”,IndustryApplications Conference,Vol.4,pp 2340-2346, Oct 2005.
[22] 陳仲軒, ''運用極化保持光纖與微流道之頻譜干涉表面電漿共振生醫感測'',國立臺灣科技大學電子工程系碩士,2017
[23] 彭秉煜, ''利用表面電漿共振感測器檢測細菌濃度'',國立虎尾科技大學光電與材料科技研究所,2015
[24] J. E. Frischeisen, "Surface plasmon resonance sensor utilizing an integrated organic light emitting diode, "Optics Express, vol. 16, pp. 18426-18436, 2008.
[25] Yi-Hsin Lin1, Hung-Shan Chen, Hung-Chun Lin, Yu-Shih Tsou1, Hsu-Kuan Hsu, and Wang-Yang Li, "Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals". Appl. Phys. Lett. 96, 113505, 2010.
[26] F.T. O’Neill and J.T. Sheridan, “Photoresist reflow method of microlens production” ,Optik - International Journal for Light and Electron Optic, Vol.113,2002.
[27] Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M.Hudson, S. Wang, Z. W. Liu, and Z. H. Lu, “Unlocking the full potential of organic light-emitting diodes on flexible plastic,” Nat. Photonics 5(12), 753–757, 2011.
[28] E. Oda, K. Orihara, T. Tanaka, T. Kamata and Y. Ishihara, “A 1920(H)×1035(V) pixel high-definition CCD image sensor”, IEEE Transactions on Electron Devices, Vol. 36, pp. 46-53, 1989.
[29] K. Hogari, S. Tetsutani, Z. Jian, F. Yamamoto and K. Sato, “Optical-transmission characteristics of optical-fiber cables and installed optical-fiber cable networks for WDM system Lightwave Technology” , Journal of Lightwave Technology, Vol. 21, pp. 540-545, 2003
[30] C.-C. Chen, H.-S. Nien, C.-L. Shen and T.-F. Wu, “Design and development of digital control multi-lamp back-light modules for TFT-LCD TV” ,Industry Applications Conference, Vol. 4, pp. 2340-2346, 2005.
[31] F.T. O’Neill and J.T. Sheridan, “Photoresist reflow method of microlens production” ,Optik - International Journal for Light and Electron Optic, Vol. 113, 2002.
[32] 楊文通, ''光與熱傳播特性'',成功大學光電科學與工程學系學位論文,2017
[33] Salvatore Carlucci, Francesco Causone, Francesco De Rosa and Lorenzo Pagliano, “A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design”, Elsevier B.V., Vol. 47, pp. 1016-1033, 2015.
[34] Madhavan Swaminathan and A. Ege Engin, “Power Integrity Modeling and Design for Semiconductors and Systems” Chapter 1, Prentice Hall, 2008.
[35] María Espinosa Bosch, Antonio Jesús Ruiz Sánchez, Fuensanta Sánchez Rojas, and Catalina Bosch Ojeda, “Recent Development in Optical Fiber Biosensors,” Sensors. 7, 797-859, 2007.
[36] 杜磊、莊奕琪, 納米電子學,電子工業出版社,2004
[37] H. H. Nguyen, J. Park, S. Kang, M. Kim, "Surface plasmon resonance: a versatile technique for biosensor applications," Sensors (Basel),10481-10510, 2015.
[38] U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Vol. 25. Springer: Berlin, 1995.
[39] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell''s equations in isotropic media," IEEE Trans. Antennas Propagat., AP4 302-307, 1966.
[40] 李正民、孫郁興、何昇遂、鄧智承, ''利用光電模擬系統之新樣式Otto組態對橄欖油於表面電漿波共振角之檢測'',光電與智慧電子研討會,中壢健行科技大學,2016
[41] 李正民、邱國華、鍾朝凱、邱繼正、錢志暹, ''表面電漿波激發KR組態一氧化碳監測系統'',台灣光電科技研討會暨國科會光電學門研究成果發表會,EP-053頁,新竹,2006
[42] 方育斌, ''LCD背光模組之光學最佳化設計'',國立成功大學,工程科學系碩士學位論文,2004
[43] 陳燕儀、呂世源, ''光學膜-光的魔術師'',科學發展,2007
[44] 蔡宗憲、劉裕猷、黃建歷、廖顯奎、鄭正元, ''顯示器之增亮膜技術專利概論與研發現況'',2009
[45] Norbert Danz, Christoph A. Wächter, Dirk Michaelis, Peter Dannberg, and Michael Flämmich, "Micro optical pattern shaping for tailored light emission from Organic LEDs, " OPTICS EXPRESS,Vol. 20, 2012.
[46] 黃浩榕與林哲瑋, ''有機電激發光顯示面板'',中華民國發明專利I604600,2017
[47] 李育穎, ''有機發光二極體光源應用於表面電漿共振感測器之研究'',長庚大學光電工程研究所碩士班論文,EP-071頁,2012
[48] 周皓偉, ''探討金膜厚度對於側磨型SPR光纖感測器的影響'',中華科技大學,機電光工程研究所碩士班論文,2013

QR CODE