簡易檢索 / 詳目顯示

研究生: 周小盈
Hsiao-Ying Chou
論文名稱: 聚醯胺樹狀高分子包覆小紅莓於放射線癌症治療
Doxorubicin loaded Poly(aminoadmine) dendrimers in radiation cancer therapy
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 吳思遠
none
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: 聚醯胺樹狀高分子小紅莓半胱胺酸組胺酸
外文關鍵詞: dendrimers, Doxorubicin, L-cysteine, L-histidine
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要以 Poly(aminoadmine) dendrimers作為載體,並且以兩種功能性小分子L-Histidine和L-Cysteine作表面修飾,形成四種不同載體(G4.5、G-Cys、G-His、G-Cys-His)。抗癌藥物Doxorubicin以物理性方式包覆於載體中,藥物含量(LC%)為7.03%、7.22%、8.69%、8.99%;包覆效率(EE%)38%、39%、47.5%、49.9%,結果顯示修飾後G4.5提升藥物包覆能力。經由體外釋放模擬證實在37℃下四種載體皆具有酸鹼應答能力且成功將藥物釋,酸性環境中(pH5.0)藥物釋放量皆高於pH7.4,而且GHC/DOX和GH/DOX藥物釋放量高於GC/DOX、G/DOX,相對地毒性也較高;酸性環境中加入放射線(γ ray)後Dendrimer Dendrimer Dendrimer Dendrimer載體明顯 有所變化,而放射線下含有His的載體成功捕捉自由基,保護Dendrimer Dendrimer Dendrimer不受到影響和安全 不受到影響和安全 將藥物包覆於內; 將藥物包覆於內; 不管是否有加入放射線,pH7.4環境中穩定包覆藥物。由螢光顯微鏡和流式細胞儀觀察Hela cell吞噬能力,顯微鏡下藍色螢光來自於G4.5位置於細胞質,紅光(DOX)大多分於細胞核中;發現細胞暴露於γ ray,可觀察到部分細胞裡的胞器和細胞質皆破損,讓藥物和載體更容易進入細胞中,增加細胞死亡率。上述證實放射線能夠成功增加Dendrimer Dendrimer DendrimerDendrimer在酸性環境中 藥物釋放量,且證實Hela將樹狀高分子包覆DOX吞噬於內和將藥物釋放制細胞中,有效抑制細胞生長


Poly(aminoadmine) dendrimers was modified with two amine moieties, L-histidine and L-cysteine(G4.5, G-Cys, G-His,G-His-Cys), which is as carrier for drug delivery. There are four kind of carriers physically load Doxorubicin anticancer drug with the loading capacity of 7.03%、7.22%、8.69%、8.99% and encapsulation efficiency of 38%、39%、47.5%、49.9% respectively. In vitro, G4.5/DOX, GC/DOX, GH/DOX,
GHC/DOX are all pH response and successful drug release under 37℃ at pH5.0. Acid environment (pH 5.0) of drug released were higher than pH7.4. And then, GH/DOX and GHC/DOX drug release are higher than GC/DOX, G/DOX, relatively high toxicity. More specifically, Dendrimer vary significantly at acidic environment after γ radiation (5Gy). DOX was released relatively faster from G4.5 and GC after radiaiton. GH/DOX and GHC/DOX successfully capture free radicals, protecting Dendrimer to effect from free radical. Drug loaded inside carriers is stable at pH7.4 regardless of whether there was added radiation. Using microscopy and flow cytometry to observe Hela cell Intracellular uptake of DOX. Blue fluorescence from G4.5 located in the cytoplasm and red (DOX) most points in the nucleus. Under radiation some cells can be observed in the cytoplasm and organelles are damaged so the drug and the carrier more easily into cells, increasing cell death. It proved to Radiation has possibility to trigger more drug released from PAMAM dendrimer carrier in acidic condition. Doxorubicin loaded PAMAM dendrimer carrier can be successfully internalized into HeLa cells and the released Doxorubicin are located in nucleus

致謝I 摘要II AbstractIII 研究動機IV 目錄V 圖目錄VII 表目錄XI 第一章緒論1 1.1癌症介紹1 1.1.1子宮頸癌症1 1.2治療方式2 1.2.1化療(Chemotherapy)2 1.2.2放射線治療(Radiation therapy)3 1.3自由基(Free Radical)3 1.3.1自由基檢測4 1.3.2L-Cysteine5 1.3.3L-histidine5 1.4高分子藥物載體6 1.4.1Poly(aminoadmine) dendrimers6 1.5癌症治療之傳遞方式7 1.5.1主動標的(Active targeting)7 1.1.1被動標的(Passive targeting)8 1.6藥物釋放機制9 1.6.1擴散控制系統(diffusion controlled system)9 1.6.2溶蝕型式控制系統 (erosion controlled System)9 1.6.3化學反應控制系統(Chemical reaction controlled System)9 1.6.4膨潤控制系統(Swelling Controlled Systems)10 1.7刺激應答高分子(stimulus-responsive)11 1.7.1內部應答(Internal stimulus)12 1.7.2外部應答(External stimulus)12 第二章文獻回顧13 2.1Doxorubicin hydrochloride(DOX•HCL)16 第三章實驗材料與方法19 3.1實驗材料、試劑及設備19 3.1.1實驗藥品19 3.1.2實驗儀器與裝置20 3.2Poly(amidoamine) Dendrimer表面修飾之高分子合成21 3.2.1高分子的制備21 3.2.2鑑定與分析22 3.3.2藥物含量23 3.5活性氧化物質(Reactive oxygen species, ROS)檢測24 3.6細胞生物性評估24 3.6.1細胞培養條件24 3.6.2細胞生物毒性測試25 3.6.3流式細胞儀分析(Flow Cytometry)26 3.6.4藥物吞噬和分布情形26 第四章結果與討論27 4.1Dendrimer表面修飾高分子之製備與鑑定27 4.1.11H-NMR27 4.1.2FT-IR30 4.2藥物包覆與性質探討33 4.3體外藥物釋放34 4.3活性氧化物質檢測37 4.4細胞生物性評估41 4.4.1不同劑量γ41 4.4.2Free DOX和G-DOX毒性測試42 4.5流式細胞儀分析(Flow Cytometry)44 4.6藥物吞噬和分佈48 第五章結論54

[1]. So-Young Kim,MiranSeo, Jung-Min Oh,Eun-Ah Cho, Yong-Sung Juhnn. Inhibition of gamma ray-induced apoptosis by stimulatory heterotrimeric GTP binding protein involves Bcl-xL down-regulation in SH-SY5Y human neuroblastoma cells. EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 39, No.5, 583-593, October 2007
[2]. Nasimudeen R Jabir, Shams Tabrez,Ghulam Md Ashraf,Shazi Shakil, Ghazi A Damanhouri,Mohammad A Kamal. Nanotechnology-based approaches in anticancer research.Int J Nanomedicine. 2012; 7: 4391–4408.
[3]. Vandana Keskar, Prem S. Mohanty, Ernest J. Gemeinhart, Richard A. Gemeinhart. Cervical cancer treatment with a locally insertable controlled release delivery system. J Control Release
[4]. J Michael Straughn, Jr,Catheryn Yashar. Patient information: Cervical cancer treatment; early stage cancer (Beyond the Basics).
[5]. Eliane Duarte-Franco, Eduardo L Franco. Cancer of the Uterine Cervix.BMC Womens Health. 2004; 4(Suppl 1): S13.
[6]. Umme Hani, Riyaz Ali M. Osmani, Rohit R. Bhosale, Hosakote Gurumallappa Shivakumar Parthasarathi K. Kulkarni. Current Perspectives on Novel Drug Delivery Systems and Approaches for Management of Cervical Cancer: A Comprehensive Review. Current Drug Targets
[7]. Rubi Mahato, Wanyi Tai, Kun Cheng. Prodrugs for Improving Tumor Targetability and Efficiency.Adv Drug Deliv Rev. 2011 Jul 18; 63(8): 659–670.
[8]. Xiao-Dong Zhang, Jinxuan Zhang, Junying Wang, Jiang Yang, Jie Chen, Xiu Shen, Jiao Deng, Dehui Deng, Wei Long, Yuan-Ming Sun, ChanglongLiu,Meixian Li. Highly Catalytic Nanodots with Renal Clearance for Radiation Protection. ACS Nano. 2016 Apr 26;10(4):4511-9
[9]. Dong Hyun Kim, Ju Hye Lee, Yong Kan Ki, Ji Ho Nam, Won Taek Kim, Ho Sang Jeon, Dahl Park, Dong Won Kim. Short-course palliative radiotherapy for uterine cervical cancer.Radiat Oncol J. 2013 Dec; 31(4): 216–221.
[10]. Branislav Ruttkay-Nedecky, Lukas Nejdl, Jaromir Gumulec,Ondrej Zitka, Michal Masarik, Tomas Eckschlager,Marie Stiborova, Vojtech Adam, Rene Kizek. The Role of Metallothionein in Oxidative Stress.Int J Mol Sci. 2013 Mar; 14(3): 6044–6066.
[11]. Kang-Kyun Wang, Bong-Jin Kim, Mi Hee Lee, Byeong-Ju Kwon, Dong Hoon Choi, Jong-Chul Park, Yong-Rok Kim. Photofunctional Co-Cr Alloy Generating Reactive Oxygen Species for Photodynamic Applications.PhotoenergyVolume 2013 (2013)
[12]. LÜ Qing-luan, YUE Ning-ning, ZHANG Miao, GONG Bin WANG Huai-you. Capacity of Tea Scavenging Singlet Oxygen Studied by Means of1,3-Diphenylisobenzofuran as Fluorescence Probe. CHEM. RES. CHINESE UNIVERSITIES 2009, 25(6), 966—970
[13]. Ana Gomes, Eduarda Fernandes, Jose´ L.F.C. Lima. Fluorescence probes used for detection of reactiveoxygen species. J. Biochem. Biophys. Methods 65 (2005) 45 – 80]
[14]. Takao Ohyashiki, Masaki Nunomura, Takafumi Katoh. Detection of superoxide anion radical in phospholipid liposomal membrane by fluorescence quenching method using 1,3-diphenylisobenzofuran. Biochimica et Biophysica Acta (BBA) BiomembranesVolume 1421, Issue 1, 21 September 1999, Pages 131–139
[15]. Patricia Carloni, Elisabetta Damiani, Greci Lucedio, M. Wozniak. On the use of 1,3-diphenylisobenzofuran (DPBF). Reaction with carbon and oxygen entered radicals in model and natural systems. Research on Chemical Intermediates 19(5):395-405 • January 1993
[16]. F. Kogelheide, K. Kartaschew, S. Baldus, M. Havenith, P. Awakowicz, J.-W. Lackmann.FTIR spectroscopy of cysteine as a ready-to-use model for plasma-induced chemical modifications. 22nd International Symposium on Plasma Chemistry July 5-10, 2015; Antwerp, Belgium
[17]. Khare S, Trivedi A, Kesavan PC, Prasad R. Effect of gamma-radiation on the structure and function of yeast membrane.Int J Radiat Biol Relat Stud Phys Chem Med. 1982 Oct;42(4):369-83.
[18]. JirinaKopoldova, Stepan H rncir. Gamma-Radiolysis of Aqueous Solution of Histidine.Z. Naturforsch. 32 c, 482-487 [1977]
[19]. Yanhua Liu, Wenping Wang, Jianhong Yang, Chengming Zhou, Jin Sun. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian Journal of Pharmaceutical Sciences Volume 8, Issue 3, June 2013, Pages 159–167
[20]. Midoux P, Pichon C, Yaouanc JJ, Jaffrès PA.Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers.Br J Pharmacol. 2009 May;157(2):166-78.
[21]. Xu Wang, Yiqing Wang, Zhuo Georgia Chen, Dong M. Shin. Advances of Cancer Therapy by Nanotechnology.Cancer Res Treat. 2009 Mar; 41(1): 1–11.
[22]. Giovana Calixto, Jéssica Bernegossi, Bruno Fonseca-Santos, Marlus Chorilli. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine. 2014; 9: 3719–3735.
[23]. Sagar R. Mudshinge, Amol B. Deore, Sachin Patil, Chetan M. Bhalgat. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharmaceutical JournalVolume 19, Issue 3, July 2011, Pages 129–141
[24]. KanikaMadaan, Sandeep Kumar, NeelamPoonia, Viney Lather, DeeptiPandita. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014 Jul-Sep; 6(3): 139–150.
[25]. Alexandre Gonçalves Dal Bóa, Yasmine Miguel SerafiniMichelettoa, Fernando Carlos Giacomellib, Georgina Lopeza, Maria Julia ReccoSartora, Jamal afiquec, SumbalSabac, Leticia De Matos Da Silveiraa, Jackson Mendesa Tiago Elias AllieviFrizona. Synthesis of new monodendrons, gallic acid derivatives, self- assembled in a columnar phase. LIQUID CRYSTALS, 2015
[26]. Jingyi Zhu; Xiangyang Shi. Dendrimer-based nanodevicesfortargeted drug delivery applications.J.Mater. Chem. B, 2013, 1, 4199-4211
[27]. Zhang M; Guo R; Kéri M; Bányai I; Zheng Y; Cao M; Cao X; Shi X.Impact of dendrimer surface functional groups on the release of doxorubicin from dendrimer carriers.J Phys Chem B. 2014 Feb 13;118(6):1696-706.
[28]. U. Boas,J. B. Christensen, P. M. H. Heegaard. Dendrimers: design, synthesis and chemical properties. Materials Chemistry Issue 38, 2006
[29]. R. Sudhakara Reddy, Sahithi Dathar. Nano drug delivery in oral cancer therapy: An emerging avenue to unveil. Medicine, Radiology, Pathology & Surgery (2015), 1, 17–22
[30]. Malinda Salim, Hiroyuki Minamikawa, Akihiko Sugimura, Rauzah Hashim. Amphiphilic designer nano-carriers for controlled release: from drug delivery to diagnostics. Med. Chem. Commun., 2014,5, 1602-1618
[31]. R. S. Harland, C. Dubernet, J. P. Bennit and N. A. Peppas, "A modelofdissolution-controlled, diffusional drug release from non-swellablepolymeric microspheres," J. Control. Rel., 7, 207-215, (1988).
[32]. MeenakshiUpreti, Amar Jyoti, PallaviSethi. Tumor microenvironment and nanotherapeutics. Translational cancer research, 2015
[33]. Hugo Almeida, Maria Helena Amaral, Paulo Lobão. Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. Applied Pharmaceutical Science 02 (06); 2012: 01-10.
[34]. Yoojin Lee, Elma D. Baron. Photodynamic Therapy: Current Evidence and Applications in Dermatology. Seminars in cutaneous medicine and surgery
[35]. BIOPHYSICAL AND BIOLOGICAL EFFECTS OF IONIZING RADIATION SECTION I – GENERAL. PluriQTM G9TM Gene Editing in Pluripotent Stem Cells
[36]. Sanna Ali. Radiation Oncology: Mechanism and Resistance. March 22, 2012
[37]. Schneider U, Lomax A, Pemler P, Besserer J, Ross D, Lombriser N, Kaser-Hotz B.The impact of IMRT and proton radiotherapy on secondary cancer incidence.Strahlenther Onkol. 2006 Nov;182(11):647-52.
[38]. Yashwant Pathak,Simon Benita. Antibody-Mediated Drug Delivery Systems: Concepts, Technology, and Applications.
[39]. M.A Attawia, M.D Borden, K.M Herbert, D.S Katti, F Asrari, K.E Uhrich, C.T Laurencina. Regional drug delivery with radiation for the treatment of Ewing’s sarcoma: In vitro development of a taxol release system. Controlled Release, Volume 71, Issue 2, 2 April 2001, Pages 193–202
[40]. Adrian C. Begg, Fiona A. Stewart, Conchita Vens1. Strategies to improve radiotherapy with targeted drugs.Nature Reviews Cancer 11, 239-253 (April 2011) | doi:10.1038/nrc3007
[41]. Arnold Herskovic, Karen Martz, Muhyi Al-Sarraf, Lawrence Leichman, Jeffrey Brindle, VainutisVaitkevicius, Jay Cooper, Roger Byhardt, Lawrence Davis, Bahman Emami. Combined Chemotherapy and Radiotherapy Compared with Radiotherapy Alone in Patients with Cancer of the Esophagus. N Engl J Med 1992; 326:1593-1598
[42].Jason Hoffman, PharmD, RPh. Doxorubicin Plus Ifosfamide, Radiotherapy Effective in Pediatric Synovial Sarcoma.
[43]. OktayTacar, PornsakSriamornsak, Crispin R. Dass. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. Pharmacy and Pharmacology.Volume 65, Issue 2, February 2013, Pages 157–170
[44]. S. Toma, R. Palumbo, A. Grimaldi, S. Barra, G. Canavese, B. Castagneto, C. Frola, E. Aitini, R. Rosso. Concomitant radiation-Doxorubicin administration in locally advanced and/or metastatic soft tissue sarcomas.Cancer Treatment An Updatepp 581-583
[45]. Catharina de L. Davies, Lisa M. Lundstrm, JomarFrengen, Live Eikenes, Øyvind S. Bruland, Olav Kaalhus, Mari H. B. Hjelstuen, Christian Brekken. Radiation Improves the Distribution and Uptake of Liposomal Doxorubicin (Caelyx) in Human Osteosarcoma Xenografts. Cell and Tumor Biology
[46]. Amanda Lowery, Halina Onishko, Dennis E. Hallahan,Zhaozhong Han. Tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors. J Control Release. 2011 Feb 28; 150(1): 117–124.
[47]. Ning Ma, Huaping Xu, Liping An, Juan Li, Zhiwei Sun, Xi Zhang. Radiation-Sensitive Diselenide Block Co-polymer Micellar Aggregates:Toward the Combination of Radiotherapy and Chemotherapy. Langmuir 2011, 27, 5874–5878
[48]. Xiao-Dong Zhang, Jinxuan Zhang , Junying Wang , Jiang Yang, Jie Chen, Xiu Shen, Jiao Deng, Dehui Deng, Wei Long, Yuan-Ming Sun, Changlong Liu,Meixian Li. Highly Catalytic Nanodots with Renal Clearance for Radiation Protection.
[49]. Sudeshna Chandra; Sascha Dietrich; Heinrich Lang; D. Bahadur.Dendrimer-Doxorubicin conjugate for enhanced therapeutic effects for cancer. J. Mater. Chem., 2011,21, 5729-5737
[50]. Yin Wang, Xueyan Cao, RuiGuo, Mingwu Shen, Mengen Zhang, Meifang Zhu, XiangyangShi.Targeted delivery of doxorubicin into cancer cells using a folic acid-dendrimer conjugate. Polym. Chem., 2011, 2, 1754-1760
[51]. Swati Girdhani, Mansoor M. Ahmed, Kaushala P. Mishra. Enhancement of Gamma Radiation-induced Cytotoxicity of Breast Cancer Cells by Curcumin. Mol Cell Pharmacol 2009;1(4):208-217
[52]. Yunus E. Kurtoglu, Manoj K. Mishra, Sujatha Kannan, Rangaramanujam M. Kannan. Drug release characteristics of PAMAM dendrimer–drug conjugates with different linkers. International Journal of PharmaceuticsVolume 384, Issues 1–2, 15 January 2010, Pages 189–194
[53]. Vesna D. Nikolić, Dusica P. Ilić, Ljubisa B. Nikolić, Mihajlo Z. Stanković, Ljiljana P. Stanojević, Ivan M. Savić, Ivana M. Savić. Thesynthesis and structure characteization of deoxyalliin and allin.Advanced technologies 1(1) (2012), 38-46
[54]. SangameshKumbar,Cato Laurencin,Meng Deng. Natural and Synthetic Biomedical Polymers. 2014
[55]. Haris Hamsakutty. ADRIAMYCIN. Free Radicals in Biology and Medicine 20003
[56]. Hiskias Keizer, Herbert M Pinedo, Gerrit Jan Schuurhuis, Hans Joenje. Doxorubicin (Adriamycin): A critical review of free radical-dependent mechanism of cytotoxicity. Pharmacology & Therapeutics Volume 47, Issue 2, 1990, Pages 219-231
[57]. Radiation Effects Research Foundation. 2007 Radiation Effects Research Foundation
[58]. vanEngeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP.Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure.Cytometry. 1998 Jan 1;31(1):1-9.
[59]. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM.Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages.J Immunol. 1992 Apr 1;148(7):2207-16.
[60]. Corinne Brana, Chris Benham, Lars Sundstrom. A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry.Brain Research ProtocolsVolume 10, Issue 2, October 2002, Pages 109–114
[61]Saikat Das, Rabiraja Singh, Daicy George, T.S. Vijaykumar, Subhashini John. Radiobiological Response of Cervical Cancer Cell Line in Low Dose Region: Evidence of Low Dose Hypersensitivity (HRS) and Induced Radioresistance (IRR). Clinical and Diagnostic Research, ISSN 0973-709X, 2015. Jun

無法下載圖示 全文公開日期 2021/08/25 (校內網路)
全文公開日期 2026/08/25 (校外網路)
全文公開日期 2026/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE