簡易檢索 / 詳目顯示

研究生: 張谷毓
Ku-Yu Chang
論文名稱: 智慧型天線技術於藍芽干擾環境下之無線區域網路語音服務應用
Applying Smart Antenna Technologies to VoWLAN with Bluetooth Interference
指導教授: 劉馨勤
Hsin-Chin Liu
口試委員: 曾德峰
Der-Feng Tseng
張立中
Li-Chung Chang
黃紹華
none
黃文傑
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 49
中文關鍵詞: 無線區域網路 IEEE 802.11b智慧型天線藍芽網際網路語音同頻道干擾
外文關鍵詞: WLAN IEEE 802.11b, Smart Antenna, Bluetooth, VoIP, co-channel interference
相關次數: 點閱:248下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,隨著無線網路的興起與普及,應用愈形廣泛。本篇論文主要闡述當語音透過無線區域網路傳輸時,受到同頻道干擾所造成服務品質降低,如封包遺失率提高、平均時基誤差增加等。
本研究使用IEEE 802.11b協定來傳輸語音,其操作頻帶為 2.4 GHz,但在此頻帶上亦有藍芽等其他系統而造成同頻道干擾問題。在此我們使用智慧型天線技術於同頻道干擾環境下使通話品質變好。
透過實驗及電腦模擬,可以得知使用智慧型天線技術於 IEEE 802.11b 系統後,可消除同頻道干擾,因此也可以使通話品質得到改善。


With the popularity of wireless network in recent years, applications are more and more extensively. This thesis elaborates the effect of service quality decrease such as packet loss rate and mean jitter increase caused by co-channel interference at voice transmission over wireless local area network.
Our research uses the IEEE 802.11b protocol for voice transmission, which operation frequency band is 2.4 GHz. However, other systems such as Bluetooth also utilize this frequency band and therefore cause the co-channel interference problem. We apply smart antenna technologies on the co-channel interference environment to make the voice quality better.
The experiment and computer simulation results show that it can eliminate the co-channel interference very well and therefore the performance of voice quality is improved by applying smart antenna technologies on IEEE 802.11b system.

Contents 摘要 i Abstract ii Contents iii List of Figures v List of Tables vi Chapter 1 Introduction 1 Chapter 2 Voice over Internet Protocol 3 2.1 VoIP Overview 3 2.2 Voice Quality in VoIP 4 2.3 Voice Quality Test 5 2.3.1 Perceptual Evaluation of Speech Quality (PESQ) 6 2.3.1.1 Operations Performed by PESQ 6 2.3.1.2 Results Provided by PESQ 7 2.3.1.3 Average PESQ scores versus packet loss rates 8 Chapter3 Wireless Technologies and Co-channel Interference in the 2.4 GHz Band 10 3.1 IEEE 802.11b 10 3.1.1 Overview of IEEE 802.11 11 3.1.2 IEEE 802.11b transmit power levels and transmit spectrum mask 12 3.1.3 High Rate, direct sequence spread spectrum PHY specification 13 3.1.3.1 Overview 13 3.1.3.2 Scope of HR/DSSS PHY specification 14 3.1.4 IEEE 802.11b Signal Source and CCK Rake Receiver 15 3.1.4.1 Signal Source of IEEE 802.11b 16 3.1.4.2 Rake Receiver of IEEE 802.11b 17 3.2 Bluetooth 19 3.2.1 Overview of Bluetooth Specification 19 3.2.2 Bluetooth Power Class 20 3.2.3 Bluetooth Physical Links and Packet Type 20 3.3 Interference in the 2.4 GHz Band 22 3.3.1 Co-channel Interference in 802.11b WLAN 22 3.3.2 Impact of Bluetooth and IEEE 802.11b Coexistence 22 Chapter 4 Smart Antenna System 25 4.1 Smart Antenna Benefits 25 4.2 Overview of Beamforming 25 4.2.1 Adaptive Beamforming 26 4.3 Adaptive Filtering Algorithm 28 4.3.1 Geometrical Interpretation of the NLMS algorithm and the APA algorithm 28 4.3.2 Mathematical Structure of Affine Projection Adaptive Filters 30 Chapter 5 Experiment Measurements and Simulation Results 35 5.1 Experiment Measurements 35 5.1.1 Experiment Setup 35 5.1.2 Experiment Results 37 5.2 Simulation 39 5.2.1 Simulation Setup 39 5.2.2 Simulation Results 40 5.2.3 Discussion 46 Chapter 6 Conclusions and Future Works 47 References 48

[1] Wei Wang, Soung Chang Liew, and Victor O. K. Li, “Solutions to performance problems in VoIP over 802.11 wireless LAN,” IEEE transactions on vehicular technology, Volume 54, Issue 1, Jan. 2005 Page(s):366 – 384.
[2] Akira Takahashi and Hideaki Yoshino, “Perceptual QoS Assessment Technologies for VoIP,” IEEE Communications Magazine, Volume: 42, Issue: 7, July 2004 page(s): 28-34.
[3] R.Shirdokar, J. Kabara and P. Krishnamurthy, “A QoS-based Indoor Wireless Data Network Design for VoIP Applications,” Vehicular Technology Conference, IEEE VTS 54th, Volume 4, 7-11 Oct. 2001 Page(s): 2594-2598.
[4] ITU-T Recommendation P.862, “Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs,” 2001.
[5] INTERNATIONAL TELECOMMUNICATION UNION, “STUDY GROUP 12 – DELAYED CONTRIBUTION 106,” Geneva, 27-31 January 2003
[6] http://www.gl.com/
[7] http://www.qovia.com/
[8] IEEE Standard 802.11b-1999, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer Extension in the 2.4 GHz Band,” 1999.
[9] IEEE Standard 802.11-1999, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,” 1999.
[10] Bluetooth Special Interest Group, “Specifications of the Bluetooth System, vol. 1, v.1.1 ‘Core’,”2001.
[11] Ming-Ju Ho, Michael S. Rawles, Marcel Vrijkorte, and Louis Fei, “RF challenges for 2.4 and 5 GHz WLAN deployment and design,” wireless communications and networking conference, WCNC2002, Volume 2, 17-21 March 2002 Page(s):783 – 788.
[12] Andrea Conti, Davide Dardari, Gianni Pasolini, and Oreste Andrisano, “Bluetooth and IEEE 802.11b coexistence: Analytical performance evaluation in fading channels,” IEEE journal on selected areas in communications, vol. 21, no. 2, February 2003.
[13] N. Golmie, R. E. Van Dyck, and A. Soltanian, “Interference of Bluetooth and IEEE 802.11: Simulation modeling and performance evaluation,” MSWiM 2001 7/01 Rome, Italy ACM ISBN 1-58113-378-2/01/0007
[14] C. F. Chiasserini and R. R. Rao, “Performance of IEEE802.11 WLANs in Bluetooth environment,” in Proc. IEEEWireless Communications and Networking Conf., vol. 1, IL, Sept. 2000, Page(s):94–99.
[15] A. Soltanian and R. E. Van Dyck, “Performance of the Bluetooth system in fading dispersive channels and interference,” in Proc. IEEE Global Telecommunications Conf., vol. 6. San Antonio, TX, Nov. 2001, Page(s):3499–3503.
[16] I. Howitt, V. Mitter, and J. Guitierrez, “Empirical study for IEEE802.11 and Bluetooth interoperability,” in Proc. Vehicular Technology Conf., vol. 2. Rhodes, Greece, May 2001, Page(s):1109–1113.
[17] IEEE P802.15 wireless local area networks. IEEE documentation, IEEE P802.15-01 418r0.
[18] I. Howitt, “WLAN and WPAN coexistence in UL band,” IEEE Trans. Veh. Technol., vol. 50, July 2001 Page(s):1114–1124.
[19] Sydanheimo L., Keskilammi M., Kivikoski M., “Performance issues on the wireless 2.4 GHz ISM band in a multisystem environment,” IEEE transactions on consumer electronics, Volume 48, Issue 3, Aug. 2002 Page(s):638 – 643.
[20] Sundar G. Sankaran and A. A. Beex, “Convergence behavior of affine projection algorithms,” IEEE transactions on signal processing, Volume 48, Issue 4, April 2000 Page(s):1086 – 1096.
[21] Salvatore Bellofiore, Jeffery Foutz, Constantine A. Balanis, and Andreas S. Spanias, “Smart-antenna system for mobile communication networks. Part 1: Overview and antenna design,” Antennas and propagation magazine, IEEE, Volume 44, Issue 3, Jun 2002 Page(s):145 – 154.
[22] Salvatore Bellofiore, Jeffery Foutz, Constantine A. Balanis, and Andreas S. Spanias, “Smart-antenna system for mobile communication networks. Part 2: Beamforming and network throughput,” Antennas and propagation magazine, IEEE, Volume 44, Issue 4, Aug. 2002 Page(s):106 – 114.
[23] Garret T. Okamoto, “Smart antenna systems and wireless LANs,” Kluwer Academic Publishers, c1998.
[24] Simon Haykin, “Adaptive filter theory, fourth edition,” NJ: Prentice Hall, 2002.
[25] Simul M.H.H., Parvez M.Z., Rahman M.A., Alam F., Islam N., “A novel smart antenna system for wireless local area networks,” Multitopic conference, 2004. Proceedings of INMIC 2004. 24-26 Dec. 2004 Page(s):238 – 243.
[26] http://www.sjlabs.com/
[27] http://www.agilent.com
[28] http://www.ethereal.com/

無法下載圖示 全文公開日期 2011/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE