簡易檢索 / 詳目顯示

研究生: 賴柏壬
Po-Jan Lai
論文名稱: 具離合器慣質設計之斜面滾動隔震支承研究
Numerical and experimental study of sloped rolling-type bearings combined with clutch-based inerter
指導教授: 汪向榮
Shiang-Jung Wang
口試委員: 楊卓諺
張家銘
陳沛清
汪向榮
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 199
中文關鍵詞: 斜面滾動隔震支承慣質離合器分析模型數值模擬性能試驗實尺隔震機台試驗
外文關鍵詞: sloped rolling-type bearing, inerter, clutch, analytical model, numerical simulation, performance test, full-scale isolated equipment test
相關次數: 點閱:507下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

傳統斜面滾動隔震支承因其斜面滾動的力學行為,可保持傳遞加速度為定值,使上部結構受到良好的保護,然其隔震位移控制仍有改善空間。因此,前人研究將慣質機構及離合器應用於傳統斜面滾動隔震支承,進一步提出具離合器慣質設計之斜面滾動隔震支承(sloped rolling-type bearings combined with clutch-based inerter, SRBI),經數值分析結果可知,結合慣質機構可有效抑制隔震位移的需求。本研究將延續前人研究成果,進一步對分析模型進行改良並透過試驗進行驗證。研究內容主要分為分析模型建立、數值模擬、性能試驗、以及實際機台試驗四個部分。
第一部分為分析模型建立與能量方程式探討。過去相關研究提出基於離合器在理想狀況下的分析模型,然而,當SRBI在實際作動時慣值機構中的離合器會引發速差效應,使得相應的數值擬合結果不夠精確且保守。為了改善此現象,本研究提出結合速差模型,以更嚴謹的數學條件來確定慣質力實際產生的時機,從而提高分析模型的準確性與保守性。同時,考慮慣值機構產生的慣質能,本研究提出相應的能量方程式,以更全面地探討SRBI的能量反應。
第二部分為數值模擬,透過以單頻正弦波作為輸入擾動,並對分析模型中各參數進行調整,進一步分析不同參數對隔震性能與能量的影響。除了正弦波外,同時以遠域和近斷層地震歷時作為輸入擾動,藉由性能評估指標量化地震擾動下分析模型的數值模擬結果,探討SRBI於不同地震擾動下的表現。
第三部分為性能試驗,以不同上部質量作為設計參數,從而瞭解不同慣質力之實際影響。此外,藉由試驗與數值模擬結果的比對,以決定係數作為評估指標識別各參數,並進一步探討分析模型於不同擾動下之擬合表現。
第四部分為實際機台試驗,試驗將於製程機台下方安裝不同的隔震支承進行振動台試驗,比較各隔震支承對機台與晶舟的保護程度,藉此探討配置內置摩擦阻尼與慣質機構對斜面滾動隔震支承隔震效益之實際影響,以作為後續SRBI改良的重要參考。
藉由上述各部分之結果可瞭解,於具慣質設計模型中加入本研究提出之速差模型確實能準確模擬SRBI於實際運動中的加速度及位移反應;同時透過能量方程式印證了SRBI作動時將轉換一部分能量至慣質機構中,並以飛輪的旋轉的方式對能量進行消散,達到抑制隔震位移的效果。


Conventional sloped rolling-type bearings (SRBs) feature the constant acceleration control performance owing to their rolling motion on sloped surfaces, thus resulting in satisfactory seismic protection for the isolated superstructure. However, their displacement control performance should be further enhanced. Previous researches proposed SRBs combined with clutch-based inerter in parallel (SRBIs). Numerical analysis results indicated that combining SRBs with inerter (i.e., adopting SRBIs) can effectively suppress the isolation displacement demand. Followed by the previous research, a refined analytical model is further proposed and experimentally examined in this study, as detailed below.
In this study, firstly, a refined analytical model for SRBIs is proposed and the corresponding energy equation is deduced. In reality, the time lag before the velocity of the SRB reaching that of the in-parallel connected clutch-based inerter with an assumed constant deceleration should be taken into consideration. To improve the accuracy and conservatism of numerical prediction, a mathematical model which can account for the velocity discrepancy between the SRB and the in-parallel connected clutch-based inerter is developed to appropriately determine the instant of generating inertia force during motion. Furthermore, with properly considering the inerter energy, the energy history of SRBIs based on the corresponding energy equation is investigated comprehensively.
Secondly, the dependence of seismic response and energy histories of SRBIs on different design parameters is numerically examined using the proposed analytical model. In addition to harmonic excitations, far-field and near-fault ground motions are used as input excitations. Some indices are defined to quantitatively assess the control performance of SRBIs subjected to ground motion excitations.
Thirdly, a series of performance tests with different weights of the isolated superstructure are executed to experimentally understand the influence of different inertance factors on the control performance of SRBIs. Besides, some necessary to-be-determined coefficients of the proposed analytical model for SRBIs are identified through comparing the coefficients of determination of experimental and numerical results.
Lastly, shake table tests on a full-scale facility inside which a crystal boat is installed are conducted. With different seismic isolation designs, including SRBs equipped with friction damping and SRBIs, their efficacy in protecting the facility and the crystal boat against seismic attack is experimentally examined, which is helpful to propose some effective and practical strategies in the future to further enhance the seismic performance of relevant facilities and crystal boats.
The results of the various components described above indicate that incorporating the proposed speed difference model into the inertial design model does indeed allow for an accurate simulation of the acceleration and displacement responses of SRBI during actual motion. Furthermore, the energy equation confirms that when SRBI is in operation, it transfers a portion of the energy to the inerter mechanism, dissipating energy through the rotation of the flywheel, thereby achieving the desired effect of suppressing isolation displacement.

摘要 I ABSTRACT III 致謝 V 目錄 VI 表目錄 IX 圖目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究內容 2 第二章 文獻回顧 4 2.1 斜面滾動隔震支承(SRB) 4 2.2 慣質機構 8 2.3 離合器 9 2.4 外加型定慣質設計 9 2.5 能量方程式 11 第三章 具離合器慣質設計之斜面滾動隔震支承 13 3.1 機構介紹 13 3.2 數值模型 14 3.2.1 具慣質設計模型 14 3.2.2 速差模型 15 3.3 能量方程式 17 第四章 數值模擬 19 4.1 正弦波分析 19 4.1.1初始設定 19 4.1.2 相同振幅不同週期下正弦波分析 21 4.1.3 相同週期不同振幅下正弦波分析 22 4.1.4 等效慣性質量比探討 23 4.1.5 飛輪自轉摩擦探討 24 4.2 地震擾動分析 25 4.2.1地震歷時篩選 25 4.2.1.1 近斷層地震、遠域地震 25 4.2.1.2 人造地震(Artificial Earthquake) 26 4.2.2性能指標 26 4.2.3結果與討論 27 4.3慣質力與摩擦阻尼探討 30 4.3.1正弦波分析 30 4.3.2地震擾動分析 31 第五章 性能試驗 33 5.1 試驗介紹 33 5.2 試驗規劃 33 5.2.1 試體設計 33 5.2.2 試驗項目 34 5.2.3 試驗設備 35 5.2.4 試驗安裝 35 5.3 參數識別 36 5.4 試驗結果擬合 38 5.4.1 正弦波 38 5.4.2 地震擾動 39 5.4.3 擬合結果探討 39 5.5 能量反應探討 41 第六章 實際機台試驗 43 6.1 試驗介紹 43 6.2 試驗規劃 43 6.2.1 試體設計 43 6.2.2 試驗項目 45 6.2.3 試驗設備 45 6.2.4 試驗安裝 46 6.3 試驗結果與討論 46 6.3.1 SRB(SRBI)對機台振動頻率之影響 47 6.3.2 擬合結果 48 6.3.3 能量反應 50 6.3.4 隔震效益 51 6.3.4.1機台 51 6.3.4.2晶舟 53 第七章 結論與未來展望 55 7.1 結論 55 7.2 未來展望 56 參考文獻 58 附表 62 附圖 92

[1]
內政部營建署,建築物耐震設計規範及解說,2011。
[2]
Hwang J. S., Huang Y. N., Hung Y. H., Huang J. C. "Applicability of seismic protective systems to structures with vibration-sensitive equipment." Journal of Structural Engineering 130.11 (2004): 1676-1684.
[3]
Nagarajaiah S., Xiaohong S. "Response of base-isolated USC hospital building in Northridge earthquake." Journal of structural engineering 126.10 (2000): 1177-1186.
[4]
黃昶閔,醫院重要醫療空間內設備物耐震性能評估之研究,2009,國立成功大學建築研究所。
[5]
Myslimaj B., Gamble S., Chin-Quee D., Davies A., Breukelman B. "Base isolation technologies for seismic protection of museum artifacts." The 2003 IAMFA Annual Conference in San Francisco, California. San Francisco, CA: IAMFA, 2003.
[6]
Smith M. C. "Synthesis of mechanical networks: the inerter." IEEE Transactions on automatic control 47.10 (2002): 1648-1662.
[7]
徐茂盛,慣質觀念之實現及在建築物減震之應用,2005,國立台灣大學機械工程系。
[8]
賴以安,由斜面滾動隔震支承平面耦合探討至結合慣質設計之分析試驗研究,2022,國立台灣科技大學營建工程系。
[9]
Lai Y. A., Wang S. J., Hsu T. Y. "Acceleration-Based Design Procedure for Sloped Rolling-Type Bearings with an Added Rotational Inerter." Structural Control and Health Monitoring (2023).
[10]
Wang S. J., Hwang J. S., Chang K. C., Shiau C.Y., Lin W. C., Tsai M. S., Hong J. X., Yang Y. H. "Sloped multi‐roller isolation devices for seismic protection of equipment and facilities." Earthquake Engineering & Structural Dynamics 43.10 (2014): 1443-1461.
[11]
Lin T. W., Hone C. C. "Base isolation by free rolling rods under basement." Earthquake engineering & structural dynamics 22.3 (1993): 261-273.
[12]
Tsai M. H., Wu S. Y., Chang K. C., Lee G. C. "Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings." Engineering structures 29.5 (2007): 694-702.
[13]
Ou Y. C., Song J., Lee G. C. "A parametric study of seismic behavior of roller seismic isolation bearings for highway bridges." Earthquake engineering & structural dynamics 39.5 (2010): 541-559.
[14]
Harvey Jr P. S., Kelly K. C. "A review of rolling-type seismic isolation: Historical development and future directions." Engineering Structures 125 (2016): 521-531.
[15]
Wang S. J., Yu C. H., Lin W. C., Hwang J. S., Chang K. C. "A generalized analytical model for sloped rolling-type seismic isolators." Engineering Structures 138 (2017): 434-446.
[16]
Málaga-Chuquitaype, C., Menendez-Vicente, C., Thiers-Moggia, R. "Experimental and numerical assessment of the seismic response of steel structures with clutched inerters." Soil Dynamics and Earthquake Engineering 121 (2019): 200-211.
[17]
王聖閔,具多重控制性能斜面滾動隔震支承之設計、分析與試驗研究,2021,國立台灣科技大學營建工程系。
[18]
Makris N., Kampas G. "Seismic protection of structures with supplemental rotational inertia." Journal of Engineering Mechanics 142.11 (2016): 04016089.
[19]
Zheng Y. L., Li L. Y., Zhang T. J. "Energy analysis and optimization of inerter-based systems." Journal of Vibration and Control 28.9-10 (2022): 985-997.
[20]
Baker J. W. "Quantitative classification of near-fault ground motions using wavelet analysis." Bulletin of the seismological society of America 97.5 (2007): 1486-1501.
[21]
宋易霖,具階段可變斜面及阻尼設計之滾動支承可行性研究,2020,國立臺灣科技大學營建工程系。
[22]
ASCE. (2006). “Minimum design loads for buildings and other structures.” ASCE/SEI 7-05, Reston, Va.
[23]
ICC-Evaluation Services, LLC. (2012). Acceptance Criteria for Seismic Certification by Shake Table Testing ofNonstructural Components, AC 156.
[24]
Kuo C. H., Huang J. Y., Lin C. M., Hsu T. Y., Chao S. H., Wen K. L. "Strong ground motion and pulse‐like velocity observations in the near‐fault region of the 2018 Mw 6.4 Hualien, Taiwan, earthquake." Seismological Research Letters 90.1 (2019): 40-50.
[25]
Acary V., Cadoux F., Lemaréchal C., Malick J. "A formulation of the linear discrete Coulomb friction problem via convex optimization." ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 91.2 (2011): 155-175.
[26]
施敏,半導體製程概論,2006。
[27]
吳宗軒,具慣質曲面滾動支承應用於隔減震設計之數值分析與試驗驗證,2023,國立臺灣科技大學營建工程系。
[28]
高子倫,軌道式幾何非線性旋轉型質量阻尼器於受地震下之
建築物的研發與實驗驗證,2022,國立臺灣大學工學院土木工程系。

無法下載圖示 全文公開日期 2025/10/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2025/10/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE