簡易檢索 / 詳目顯示

研究生: 田中悠平
Yuhei Tanaka
論文名稱: 銪與低分子量有機化合物之錯合反應
Complex Formation of Europium with Low Molecular Weight Dissolved Organic Matter
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 李清華
Ching-Hwa Lee
李奇旺
Chi-Wang Li
顧洋
Young Ku
王孟菊
Meng-Jiy wang
蔡伸隆
Shen-long Tsai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 154
外文關鍵詞: Stability constant
相關次數: 點閱:152下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Rare earth elements (REEs) are widely used in various high-tech industries such as permanent magnets and compact fluorescent and so on. However, REEs are discharged into the natural environment during the processes such as their mining, production, utilization, and recycling. Health hazards of REEs have been reported for workers in occupations related to these processes and for residents living near mines. Due to anthropogenic activities, REEs are ubiquitously distributed through river water to agricultural soil and coastal sediments in built-up areas in many countries, and therefore need to be considered as a pollutant. REEs concentrated in certain freshwater are in the nanomolar range and dissolved organic carbon is responsible for the bioaccumulation. Enriched REEs are strongly complexed with carbonate ions and fulvic acid. Speciation analysis is essential for assessing the mobility and toxicity of REEs, however, the data is limited and lacking. Europium (Eu) is used in a phosphor for desktops and other applications, and recycling is being attempted from its waste. Eu has been detected in workers at recycling facilities and toxicity has been reported in various living organisms. Complexation and speciation of Eu with carboxylic acids (CAs) such as succinic acid (Suc), fumaric acid (Fum), malic acid (Mal), α-ketoglutaric acid (Ket), oxaloacetic acid (Oxa), isocitric acid (Iso), and citric acid (Cit), and amino acids (AAs) such as alanine (Ala), phenylalanine (Phe), lysine (Lys), aspartic acid (Asp), serine (Ser), and cysteine (Cys) which are used in our daily life and industry were investigated.
    After identifying stoichiometric recognition and a number of chemical species by ESI-MS and potentiometric titration, stability constants were determined by the potentiometric titration curves plugging to Hyperquad2008. From these determined stability constants, speciation diagrams were produced by HySS2009 in the condition under mimicking condition of river water containing carbonate, sulfate, and chloride ions and their Eu complexes including Eu hydroxide complexes.
    The K1 values of Eu-CAs complexes were 3.5 of Suc, 3.8 of Fum, 4.2 of Mal, 4.2 of Ket, 4.4 of Oxa, 5.6 of Iso, and 6.7 of Cit, respectively. The K values of Eu-AAs complexes were 5.9 of K1 and 7.5 of K2 for Ala, 5.7 of K1 and 8.4 of K2 for Phe, 8.2 of K1 and 7.3 of K2 for Lys, 5.8 of K1 and 7.5 of K2 for Asp, 4.5 of K1 and 8.5 of K2 for Ser, 3.2 of K1 and 8.3 of K2 for Cys, respectively. A comparison of these obtained K values and a literature survey allowed the structure to be estimated. In the speciation diagrams, Eu-Cl complexes and solid phase did not form for all ligands. Eu and CAs were complexed as the main forms of deprotonated, protonated, and hydroxide species of M:L = 1:1 by binding to free ions or competing with sulfate or carbonate ions in the acidic range of pH depending on CAs. The maximum fraction of Eu-CA complexes was up to 0.4-82% depending on the ligand. Eu and AAs predominantly formed protonated species of M:L of 1:1 and 1:2, as the maximum fraction of Eu-AA complexes was in the range of 1-62%. For all ligands, carbonate species were dominant at pH 6.5-9.3, and Eu(OH)30 was the dominant species from pH 9.4.

    CHAPTER 1 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives of the study 4 CHAPTER 2 1 LITERATURE REVIEW 1 2.1 Rare Earth Elements (REEs) 1 2.2 Speciation analysis of REEs 6 2.3. Organic ligand in the natural water 9 2.4. Europium (Eu) 13 CHAPTER 3 1 MATERIALS AND METHODS 1 3.1 Materials 1 3.2. Instruments 2 3.3. Methods 3 3.3.1 Potentiometric titrations 3 3.3.2 Electrospray ionization-mass spectrometry (ESI-MS) 5 3.3.3 Speciation diagrams 6 CHAPTER 4 1 RESULTS AND DISCUSSION 1 4.1. Carboxylic acids (CAs) 1 4.1.1. Dissociation constants of carboxylic acids (CAs) 1 4.1.2. Recognition of complex formation of Eu with carboxylic acids 7 4.1.3. ESI-MS analysis of Eu complex with CAs 11 4.1.4 Determination of stability constants of Eu with CAs 26 4.1.4. Speciation diagrams of Eu complex with carboxylic acids 36 4.2. Amino acids (AAs) 47 4.2.1. Dissociation constants of amino acids (AAs) 47 4.2.2. Recognition of complex formation of Eu with amino acids 53 4.2.3 ESI-MS analysis of Eu complex with amino acids 57 4.2.4 Determination of stability constants of Eu with amino acids 71 4.2.5 Speciation diagrams of Eu complex with amino acids 80 CHAPTER 5 1 CONCLUSSIONS AND RECCOMENDATIONS 1 5.1 Conclusions 1 5.2. Recommendations 5 REFERENCES 1

    Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., & Vacca, A. (1999). Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coordination Chemistry Reviews, 184, 1, 311–318. https://doi.org/10.1016/S0010-8545(98)00260-4
    Alvarez, S. (2020). Coordinating ability of anions, solvents, amino acids, and gases towards alkaline and alkaline-earth elements, transition metals, and lanthanides. Chemistry - A European Journal, 26, 19, 4350–4377. https://doi.org/10.1002/chem.201905453
    Amyot, M., Clayden, M. G., Macmillan, G. A., Perron, T., & Arscott-Gauvin, A. (2017). Fate and trophic transfer of rare earth elements in temperate lake food webs. Environ. Sci. Technol, 51, 15. https://doi.org/10.1021/acs.est.7b00739
    Ankit, Y., Muneer, W., Gaye, B., Lahajnar, N., Bhattacharya, S., Bulbul, M., Jehangir, A., Anoop, A., & Mishra, P. K. (2022). Apportioning sedimentary organic matter sources and its degradation state: Inferences based on aliphatic hydrocarbons, amino acids and δ15N. Environmental Research, 205, 112409. https://doi.org/10.1016/J.ENVRES.2021.112409
    Arienzo, M., Ferrara, L., Trifuoggi, M., & Toscanesi, M. (2022). Advances in the fate of rare earth elements, REE, in transitional environments: Coasts and estuaries. Water , 14, 3, 1–23. https://doi.org/10.3390/w14030401
    Artifon, V., Zanardi-Lamardo, E., & Fillmann, G. (2019). Aquatic organic matter: Classification and interaction with organic microcontaminants. Science of The Total Environment, 649, 1620–1635. https://doi.org/10.1016/J.SCITOTENV.2018.08.385
    Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10, 4, 1285–1303. https://doi.org/10.1016/J.GSF.2018.12.005
    Berthon, G. (1995). The stability constants of metal complexes of amino acids with polar side chains. Pure & Appl. Chem., 67, 7, 1117–1240.
    Binnemans, K. (2015). Interpretation of europium(III) spectra. Coordination Chemistry Reviews, 295, 1–45. https://doi.org/10.1016/J.CCR.2015.02.015
    Blinova, I., Vija, H., Lukjanova, A., Muna, M., Syvertsen-Wiig, G., & Kahru, A. (2018). Assessment of the hazard of nine (doped) lanthanides-based ceramic oxides to four aquatic species. Science of The Total Environment, 612, 1171–1176. https://doi.org/10.1016/J.SCITOTENV.2017.08.274
    Brown, P. L., & Ekberg, C. (2016). Hydrolysis of metal ions, 1. John Wiley & Sons.
    Bruce, J. I., Dickins, R. S., Govenlock, L. J., Gunnlaugsson, T., Lopinski, S., Lowe, M. P., Parker, D., Peacock, R. D., Perry, J. J. B., Aime, S., & Botta, M. (2000). The selectivity of reversible oxy-anion binding in aqueous solution at a chiral europium and terbium center: Signaling of carbonate chelation by changes in the form and circular polarization of luminescence emission. Journal of the American Chemical Society, 122, 40, 9674–9684. https://doi.org/10.1021/JA001797X
    Burnett, C. L., Heldreth, B., Bergfeld, W. F., Belsito, D. v, Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2013). Safety assessment of α-amino acids as used in cosmetics. International Journal of Toxicology, 32, 6, 41S-64S. https://doi.org/10.1177/1091581813507090
    Canaviri, E. C., Feliz, M. R., & Capparelli, A. L. (1992). Kinetics of the complexation of manganese(II), cobalt(II) and zinc(II) with DL-isocitric acid. Transition Metal Chemistry, 17, 446–448. https://doi.org/https://link.springer.com/content/pdf/10.1007/BF02910729.pdf
    Cánovas, C. R., Basallote, M. D., & Macías, F. (2020). Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ría of Huelva (SW Spain). Environmental Pollution, 267, 115506. https://doi.org/10.1016/J.ENVPOL.2020.115506
    Canovas, P. A., & Shock, E. L. (2016). Geobiochemistry of metabolism: Standard state thermodynamic properties of the citric acid cycle. Geochimica et Cosmochimica Acta, 195, 293–322. https://doi.org/10.1016/J.GCA.2016.08.028
    Cheisson, T., & Schelter, E. J. (2019). Rare earth elements: Mendeleev’s bane, modern marvels. SCIENCE, 363, 6426, 489–493. https://doi.org/https://doi.org/10.1126/science.aau7628
    Choppin, G. R. (1984). Lanthanide complexation in aqueous solutions. Journal of the Less Common Metals, 100, 141–151. https://doi.org/10.1016/0022-5088(84)90060-2
    Choppin, G. R., Dadgar, A., & Stampfli, R. (1973). The thermodynamics of lanthanide complexing by fumarate and malateE. J. Inorg, Nucl. Chem, 35, 3, 875–880. https://doi.org/https://doi.org/10.1016/0022-1902(73)80457-9
    Coupez, B., Boehme, C., & Wipff, G. (2002). Interaction of bifunctional carbonyl and phosphoryl ligands with M3+ lanthanide cations: how strong is the bidentate effect? The role of ligand size and counterions investigated by quantum mechanicsy. Phys. Chem. Chem. Phys., 4, 5716–5729. https://doi.org/10.1039/b207177k
    Cukrowski, I., & Matta, C. F. (2010). Hydrogen-hydrogen bonding: A stabilizing interaction in strained chelating rings of metal complexes in aqueous phase. Chemical Physics Letters, 499, 1–3, 66–69. https://doi.org/10.1016/j.cplett.2010.09.013
    de Stefano, C., Foti, C., Gianguzza, A., & Sammartano, S. (2000). The interaction of amino acids with the major constituents of natural waters at different ionic strengths. Marine Chemistry, 72, 1, 61–76. https://doi.org/10.1016/S0304-4203(00)00067-0
    Derrien, M., Brogi, S. R., & Gonçalves-Araujo, R. (2019). Characterization of aquatic organic matter: Assessment, perspectives and research priorities. Water Research, 163, 114908. https://doi.org/10.1016/J.WATRES.2019.114908
    di Marco, V. B., & Bombi, G. G. (2006). Electrospray mass spectrometry (ESI-MS) in the study of metal-ligand solution equilibria. Mass Spectrometry Reviews, 25, 3, 347–379. https://doi.org/10.1002/mas.20070
    Dickins, R. S., Aime, S., Batsanov, A. S., Beeby, A., Botta, M., Bruce, J. I., Howard, J. A. K., Love, C. S., Parker, D., Peacock, R. D., & Puschmann, H. (2002). Structural, luminescence, and NMR studies of the reversible binding of acetate, lactate, citrate, and selected amino acids to chiral diaqua ytterbium, gadolinium, and europium complexes. Journal of the American Chemical Society, 124, 43, 12697–12705. https://doi.org/10.1021/ja020836x
    Dickins, R. S., Batsanov, A. S., Howard, J. A. K., Parker, D., Puschmann, H., & Salamano, S. (2004). Structural and NMR investigations of the ternary adducts of twenty α-amino acids and selected dipeptides with a chiral, diaqua–ytterbium complex. Journal of the Chemical Society. Dalton Transactions, 4, 1, 70–80. https://doi.org/10.1039/b311791j
    Dickson, A. G., Wesolowski, D. J., Palmer, D. A., & Mesmer, R. E. (1990). Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250°C. J. Phys. Chem, 94, 7978–7985. https://pubs.acs.org/sharingguidelines
    Drobniak, A., & Mastalerz, M. (2022). Rare earth elements: A brief overview. Indiana Journal of Earth Sciences, 4. https://doi.org/10.14434/ijes.v4i1.33628
    Dumpala, R. M. R., Boda, A., Kumar, P., Rawat, N., & Ali, S. M. (2019). Reduction in coordination number of Eu(III) on complexation with pyrazine mono- and di-carboxylates in aqueous medium. Inorganic Chemistry, 58, 16, 11180–11194. https://doi.org/10.1021/acs.inorgchem.9b01772
    Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., & Dissanayake, K. (2020). The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122, 103521. https://doi.org/10.1016/J.OREGEOREV.2020.103521
    El-Sherif, A. A. (2006). Mixed-ligand complexes of 2-(aminomethyl)benzimidazole palladium(II) with various biologically relevant ligands. Journal of Solution Chemistry, 35, 9, 1287–1301. https://doi.org/10.1007/s10953-006-9062-9
    Elzawawy, F. M. (1991). Complex formation constants and thermodynamic parameters for La(III) and Y(III) L-serine complexes. Monatshefte Ffir Chemie, 122, 921–925. https://doi.org/https://doi.org/10.1007/BF00823421
    Fabian, M., Pinakidou, F., Tolnai, I., Czompoly, O., & Osan, J. (2021). Lanthanide (Ce, Nd, Eu) environments and leaching behavior in borosilicate glasses. Scientific Reports, 11, 1–15. https://doi.org/10.1038/s41598-021-92777-w
    Farias, C. B. B., Almeida, F. C. G., Silva, I. A., Souza, T. C., Meira, H. M., Soares da Silva, R. de C. F., Luna, J. M., Santos, V. A., Converti, A., Banat, I. M., & Sarubbo, L. A. (2021). Production of green surfactants: Market prospects. Electronic Journal of Biotechnology, 51, 28–39. https://doi.org/10.1016/J.EJBT.2021.02.002
    Feldmann, J., Salaün, P., & Lombi, E. (2009). Critical review perspective: Elemental speciation analysis methods in environmental chemistry-moving towards methodological integration. Environmental Chemistry, 6, 4, 275–289. https://doi.org/10.1071/EN09018
    Fischer, K. (2002). Environmental analysis of aliphatic carboxylic acids by ion-exclusion chromatography. Analytica Chimica Acta, 465, 1–2, 157–173. https://doi.org/10.1016/S0003-2670(02)00204-0
    G. Ibanez, J., Hernandez-Esparza, M., Doria-Serrano, C., Fregoso-Infante, A., & Mohan Singh, M. (2007). The chemistry of processes in the hydrosphere. Environmental Chemistry, 96–136. https://doi.org/https://doi.org/10.1007/978-0-387-31435-8_6
    Gelles, E., & Nancollas, G. H. (1956). Electrochemical studies in the rare earth series part 1. Rare earth oxaloacetates. Trans. Faraday Soc., 52, 98–102. https://doi.org/https://doi.org/10.1039/TF9565200098
    Ghiamati, E., Sheikhani, F., & Farrokhi, A. (2018). Potentiometric and thermodynamic studies of some metal–cysteine complexes. Journal of the Chinese Chemical Society, 65, 2, 217–224. https://doi.org/10.1002/jccs.201700022
    Godwyn-Paulson, P., Jonathan, M. P., Rodríguez-Espinosa, P. F., & Rodríguez-Figueroa, G. M. (2022). Rare earth element enrichments in beach sediments from Santa Rosalia mining region, Mexico: An index-based environmental approach. Marine Pollution Bulletin, 174, 113271. https://doi.org/10.1016/J.MARPOLBUL.2021.113271
    Grzybowski, A. K., Tate, S. S., & Datta, S. P. (1970). Magnesium and manganese complexes of citric and isocitric acids. J. Chem. Soc. A, 321, 241–245. https://doi.org/https://doi.org/10.1039/J19700000241
    Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of The Total Environment, 636, 299–313. https://doi.org/10.1016/J.SCITOTENV.2018.04.235
    Hamada, Y. Z., Harris, M., Burt, K., Greene, J., & Rosli, K. (2013). Detailed potentiometric study of Al3+ and Cr3+ with malic acid in aqueous solutions. Journal of Membrane and Separation Technology, 2, 4, 213–218.
    Hamadi, L., Mansouri, S., Oulmi, K., & Kareche, A. (2018). The use of amino acids as corrosion inhibitors for metals: A review. Egyptian Journal of Petroleum, 27, 4, 1157–1165. https://doi.org/10.1016/J.EJPE.2018.04.004
    Hancock, R. D. (1992). Chelate ring size and metal ion selection. The basis of selectivity for metal ions in open-chain ligands and macrocycles. J. Chem. Educ., 69, 8, 615–621. https://doi.org/10.1021/ed069p615
    Hannya, A., Nishimura, T., Matsushita, I., Tsubota, J., & Kawata, Y. (2017). Efficient production and secretion of oxaloacetate from Halomonas sp. KM-1 under aerobic conditions. AMB Express, 7, 209. https://doi.org/10.1186/s13568-017-0516-9
    Heller, A., Barkleit, A., Foerstendorf, H., Tsushima, S., Heim, K., & Bernhard, G. (2012). Curium(iii) citrate speciation in biological systems: a europium(iii) assisted spectroscopic and quantum chemical study. Dalton Trans., 41, 13969–13983. https://doi.org/10.1039/c2dt31480k
    Heller, A., Rönitz, O., Barkleit, A., Bernhard, G., & Ackermann, J.-U. (2010). Complexation of europium(III) with the zwitterionic form of amino acids studied with ultraviolet-visible and time-resolved laser-induced fluorescence spectroscopy. Appl Spectrosc, 64, 8, 930–935. https://doi.org/10.1366/000370210792081127
    Henchoz, Y., Schappler, J., Geiser, L., Prat, J., Carrupt, P. A., & Veuthey, J. L. (2007). Rapid determination of pKa values of 20 amino acids by CZE with UV and capacitively coupled contactless conductivity detections. Analytical and Bioanalytical Chemistry, 389, 6, 1869–1878. https://doi.org/10.1007/s00216-007-1568-5
    Hu, M., Li, N., & Yao, K. (2006). Synthesis and characterization of rare earth complexes with phthalaldehyde-lysine schiff base. Frontiers of Chemistry in China, 1, 4, 369–373. https://doi.org/10.1007/s11458-006-0058-1
    Hummel, W., Berner, U., Curti, E., Pearson, F. J., & Thoenen, T. (2002). Nagra/PSI chemical thermodynamic data base 01/01. Radiochimica Acta, 90, 9–11, 805–813. https://doi.org/10.1524/ract.2002.90.9-11_2002.805
    Indelicato, S., Bongiorno, D., & Ceraulo, L. (2021). Recent approaches for chemical speciation and analysis by electrospray ionization (ESI) mass spectrometry. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.625945
    Jackson, G. E., & du Toit, J. (1991). Gadolinium(iii) in vivo speciation. Part I A Potentiometric and spectroscopic study of gadolinium(iii) citrate corn plexes. J. CHEM. SOC. DALTON TRANS., 1463–1466. https://doi.org/https://doi.org/10.1039/DT9910001463
    Jain, A., Yadav, K., Mohapatra, M., Godbole, S. v., & Tomar, B. S. (2009). Spectroscopic investigation on europium complexation with humic acid and its model compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 5, 1122–1126. https://doi.org/10.1016/J.SAA.2009.01.008
    Jain, S. (2017). Study of stability of metal complexes with reference to the nature of metal ion and ligand and factors affecting the stability. UNIVERSAL RESEARCH REPORTS, 4, 3.
    Kallscheuer, N. (2018). Engineered microorganisms for the production of food additives approved by the European Union-A systematic analysis. Frontiers in Microbiology, 9, 1–20. https://doi.org/10.3389/fmicb.2018.01746
    Khaled Mahmoud, R., & Amin, R. M. (2015). Effect of biologically active oxoglutaric acid on micellar properties of important anionic surfactant at different temperatures. Advances in Applied Science Research, 6, 6, 194–206. https://doi.org/DOI: 10.2116/analsci.19.273
    Khan, A. M., Bakar, N. K. A., Bakar, A. F. A., & Ashraf, M. A. (2017). Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: a review. Environmental Science and Pollution Research, 24, 29, 22764–22789. https://doi.org/10.1007/s11356-016-7427-1
    Kiss, T., Enyedy, É. A., & Jakusch, T. (2017). Development of the application of speciation in chemistry. Coordination Chemistry Reviews, 352, 401–423. https://doi.org/10.1016/J.CCR.2016.12.016
    Kondoh, A., & Oi, T. (1998). Interaction of alkaline earth metal ions with carboxylic acids in aqueous solutions studied by 13C NMR spectroscopy. Zeitschrift Für Naturforschung A, 53, 77–91. https://doi.org/https://doi.org/10.1515/zna-1998-1-212
    Kot, A., & Namiesńik, J. (2000). The role of speciation in analytical chemistry. TrAC Trends in Analytical Chemistry, 19, 2–3, 69–79. https://doi.org/10.1016/S0165-9936(99)00195-8
    Kövilein, A., Kubisch, C., Cai, L., & Ochsenreither, K. (2019). Malic acid production from renewables: a review. Journal of Chemical Technology & BiotechnologyVolume, 95, 3, 513-526 https://doi.org/10.1002/jctb.6269
    Kremer, C., Torres, J., Domínguez, S., & Mederos, A. (2005). Structure and thermodynamic stability of lanthanide complexes with amino acids and peptides. Coordination Chemistry Reviews, 249, 5–6, 567–590. https://doi.org/10.1016/J.CCR.2004.07.004
    Kumar, R., Basak, B., & Jeon, B. H. (2020). Sustainable production and purification of succinic acid: A review of membrane-integrated green approach. Journal of Cleaner Production, 277, 123954. https://doi.org/10.1016/J.JCLEPRO.2020.123954
    Lee, B. H., Yeong Jae, P., & H. Monn. (1995). Identification of europium (III) hydroxide formation by Eu (III) luminiscence spectroscopy. Bulletin of Korean Chemistry Society, 16, 7, 654–657.
    Liasko, R., & Evangelou, A. (2012). Toxic effects of europium chloride on developing zebrafish (Danio rerio) embryos. Journal of Biological Research. 18, 291-296. http://www.jbr.gr
    Lide, D. (2006). Dissociation constants of organic acids and bases. CRC Handbook of Chemistry and Physics (91th Edition).
    Lie, J., & Liu, J. C. (2021). Recovery of Y and Eu from waste CRT phosphor using closed-vessel microwave leaching. Separation and Purification Technology, 277, 119448. https://doi.org/10.1016/J.SEPPUR.2021.119448
    Limaye, S. N., & Saxena, M. C. (1986). Relative complexing tendencies of O-O , O-N, and O-S donor (secondary) ligands in some lanthanide-EDTA mixed-ligand complexes. Canadian Journal of Chemistry, 64, 5, 865–870. https://doi.org/https://doi.org/10.1139/v86-143
    Liu, W. S., Guo, M. N., Liu, C., Yuan, M., Chen, X. T., Huot, H., Zhao, C. M., Tang, Y. T., Morel, J. L., & Qiu, R. L. (2019). Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere, 216, 75–83. https://doi.org/10.1016/J.CHEMOSPHERE.2018.10.109
    Liu, X., Wu, M., Li, C., Yu, P., Feng, S., Li, Y., & Zhang, Q. (2022). Interaction structure and affinity of zwitterionic amino acids with important metal cations (Cd2+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+ and Zn2+) in aqueous solution: A theoretical study. Molecules, 27, 8, 2407. https://doi.org/10.3390/molecules27082407
    Long, L. H., & Halliwell, B. (2011). Artefacts in cell culture: α-ketoglutarate can scavenge hydrogen peroxide generated by ascorbate and epigallocatechin gallate in cell culture media. Biochemical and Biophysical Research Communications, 406, 1, 20–24. https://doi.org/10.1016/J.BBRC.2011.01.091
    Mahmoud, M. R., Hamed, M. A., & Ahmed, I. T. (1993). Potentiometric studies on temary complexes of some heavy metal ions containing N-(2-Acetamido)-iminodiacetic and amino acids. Arch. Pharm. Res, 16, 1.
    Mandal, P., Kretzschmar, J., & Drobot, B. (2022). Not just a background: pH buffers do interact with lanthanide ions—a europium(III) case study. Journal of Biological Inorganic Chemistry, 27, 2, 249–260. https://doi.org/10.1007/s00775-022-01930-x
    Martin, L. A., Vignati, D. A. L., & Hissler, C. (2021). Contrasting distribution of REE and yttrium among particulate, colloidal and dissolved fractions during low and high flows in peri-urban and agricultural river systems. Science of The Total Environment, 790, 148207. https://doi.org/10.1016/J.SCITOTENV.2021.148207
    Meija, J., Coplen, T. B., Berglund, M., Brand, W. A., de Bièvre, P., Gröning, M., Holden, N. E., Irrgeher, J., Loss, R. D., Walczyk, T., & Prohaska, T. (2016). Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88, 3, 293–306. https://doi.org/10.1515/pac-2015-0503
    Mihalache, M., Oprea, O., Stefan Vasile, B., Guran, C., & Lavinia Ardelean, I. (2018). Synthesis, characterization and biological activity of composite combinations of Cu(II), Fe(III) and Mn(III) with α-ketoglutaric acid and 1-(o-tolyl) biguanide, Bull., Series B, 80, 1, 113–126. https://www.researchgate.net/publication/323720195
    Moll, H., Sachs, S., & Geipel, G. (2020). Plant cell (Brassica napus) response to europium(III) and uranium(VI) exposure. Environmental Science and Pollution Research, 27, 25, 32048–32061. https://doi.org/10.1007/s11356-020-09525-2
    Mores, S., Vandenberghe, L. P. de S., Magalhães Júnior, A. I., de Carvalho, J. C., de Mello, A. F. M., Pandey, A., & Soccol, C. R. (2021). Citric acid bioproduction and downstream processing: Status, opportunities, and challenges. Bioresource Technology, 320, 124426. https://doi.org/10.1016/J.BIORTECH.2020.124426
    Mujika, J. I., Ugalde, J. M., & Lopez, X. (2014). Aluminum interaction with glutamate and α-ketoglutarate: A computational study. Journal of Physical Chemistry B, 118, 24, 6680–6686. https://doi.org/10.1021/jp502724w
    Munemoto, T., Solongo, T., Okuyama, A., Fukushi, K., Yunden, A., Batbold, T., Altansukh, O., Takahashi, Y., Iwai, H., & Nagao, S. (2020). Rare earth element distributions in rivers and sediments from the Erdenet Cu–Mo mining area, Mongolia. Applied Geochemistry, 123, 104800. https://doi.org/10.1016/J.APGEOCHEM.2020.104800
    Pagano, G., Aliberti, F., Guida, M., Oral, R., Siciliano, A., Trifuoggi, M., & Tommasi, F. (2015). Rare earth elements in human and animal health: State of art and research priorities. Environmental Research, 142, 215–220. https://doi.org/10.1016/J.ENVRES.2015.06.039
    Pagano, G., Thomas, P. J., di Nunzio, A., & Trifuoggi, M. (2019). Human exposures to rare earth elements: Present knowledge and research prospects. Environmental Research, 171, 493–500. https://doi.org/10.1016/J.ENVRES.2019.02.004
    Pavón, S., Lapo, B., Fortuny, A., Sastre, A. M., & Bertau, M. (2021). Recycling of rare earths from fluorescent lamp waste by the integration of solid-state chlorination, leaching and solvent extraction processes. Separation and Purification Technology, 272, 118879. https://doi.org/10.1016/J.SEPPUR.2021.118879
    Pickard, A. E., Barry, C., Chapman, P. J., Feuchtmayr, H., Spears, B. M., Banks, J., Booker, N., Gaston, L., Moody, C. S., Willis, N., & Monteith, D. (2021). How can advances in dissolved organic matter characterisation lead to more effective water treatment?
    Plancque, G., Moulin, V., Toulhoat, P., & Moulin, C. (2003). Europium speciation by time-resolved laser-induced fluorescence. Analytica Chimica Acta, 478, 1, 11–22. https://doi.org/10.1016/S0003-2670(02)01486-1
    Popović-Nikolić, M. R., Popović, G. v., Stojilković, K., Dobrosavljević, M., & Agbaba, D. D. (2018). Acid-base equilibria of rupatadine fumarate in aqueous media. Journal of Chemical and Engineering Data, 63, 8, 3150–3156. https://doi.org/10.1021/acs.jced.8b00422
    Portanova, R., J Lajunen, L. H., Tolazzi, M., & Piispanen, J. (2003). Critical evaluation of stability constants for α-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes partII. aliphatic 2-hydroxycarboxylic acids. Pure Appl. Chem., 75, 4.
    Pourret, O., Davranche, M., Gruau, G., & Dia, A. (2007). Competition between humic acid and carbonates for rare earth elements complexation. Journal of Colloid and Interface Science, 305, 1, 25–31. https://doi.org/10.1016/J.JCIS.2006.09.020
    Rawat, N., Bhattacharyya, A., Tomar, B. S., Ghanty, T. K., & Manchanda, V. K. (2011). Thermodynamics of U(VI) and Eu(III) complexation by unsaturated carboxylates. Thermochimica Acta, 518, 1–2, 111–118. https://doi.org/10.1016/J.TCA.2011.02.018
    Rawat, N., Sharma, R. S., Tomar, B. S., & Manchanda, V. K. (2010). Thermodynamic study of complexation of Eu(III) with carboxylates by potentiometry and calorimetry. Thermochimica Acta, 501, 1–2, 13–18. https://doi.org/10.1016/J.TCA.2009.12.016
    Roa Engel, C. A., J Straathof, A. J., Zijlmans, T. W., van Gulik, W. M., & M van der Wielen, L. A. (2008). Fumaric acid production by fermentation. Applied Microbiology and Biotechnology, 78, 379–389. https://doi.org/10.1007/s00253-007-1341-x
    Sachs, S., Heller, A., Weiss, S., Bok, F., & Bernhard, G. (2015). Interaction of Eu(III) with mammalian cells: Cytotoxicity, uptake, and speciation as a function of Eu(III) concentration and nutrient composition. Toxicology in Vitro, 29, 7, 1555–1568. https://doi.org/10.1016/j.tiv.2015.06.006
    Saxena, R. S., & Dhawan, S. K. (1983). La(III) , Ce(III), Pr(III), Nd(III), Sm(III) & Gd(III) complexes of L-lysine monohydrochloride. Indian Journal of Chemistry, 22, 89–90.
    Silva, A. M. N., Kong, X., & Hider, R. C. (2009). Determination of the pKa value of the hydroxyl group in the α-hydroxycarboxylates citrate, malate and lactate by 13C NMR: Implications for metal coordination in biological systems. BioMetals, 22, 5, 771–778. https://doi.org/10.1007/s10534-009-9224-5
    Souri, M. K. (2016). Aminochelate fertilizers: The new approach to the old problem; a review. Open Agriculture, 1, 1, 118–123. https://doi.org/10.1515/opag-2016-0016
    Spaulding, L., & Brittain, H. G. (1985). Complexation of amino acids by terbium(III) ethylenediaminetetraacetate. Inorg. Chem, 24, 22, 3692–3698. https://doi.org/https://doi.org/10.1021/ic00216a044
    Stoimenova, A., Ivanov, K., Obreshkova, D., & Saso, L. (2013). Biotechnology in the production of pharmaceutical industry ingredients: Amino acids. Biotechnology and Biotechnological Equipment, 27, 2, 3620–3626. https://doi.org/10.5504/bbeq.2012.0134
    Takyi, S. A., Basu, N., Arko-Mensah, J., Dwomoh, D., Houessionon, K. G., & Fobil, J. N. (2021). Biomonitoring of metals in blood and urine of electronic waste (E-waste) recyclers at Agbogbloshie, Ghana. Chemosphere, 280, 130677. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130677
    Talley, J. M., Cerda, B. A., Ohanessian, G., & Wesdemiotis, C. (2002). Alkali metal ion binding to amino acids versus their methyl esters: Affinity trends and structural changes in the gas phase. Chemistry - A European Journal, 8, 6, 1377–1388. https://doi.org/https://doi.org/10.1002/1521-3765(20020315)8:6%3C1377::AID-CHEM1377%3E3.0.CO;2-D
    Tang, J., & Johannesson, K. H. (2003). Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach. Geochimica et Cosmochimica Acta, 67(13), 2321–2339. https://doi.org/10.1016/S0016-7037(02)01413-8
    Tang, J., & Johannesson, K. H. (2010). Ligand extraction of rare earth elements from aquifer sediments: Implications for rare earth element complexation with organic matter in natural waters. Geochimica et Cosmochimica Acta, 74, 23, 6690–6705. https://doi.org/10.1016/J.GCA.2010.08.028
    Tate, S. S., Grzybowski, A. K., & Datta, S. P. (1964). The stability constants of the magnesium complexes of the keto and enol isomers of oxaloacetic acid at 25°C. J. Chem. Soc., 1381–1389. https://doi.org/https://doi.org/10.1039/JR9640001381
    Taube, F., Björn, D., André, R., Foerstendorf, H., Acker, M., Patzschke, M., Trumm, M., Taut, S., & Stumpf, T. (2019). Thermodynamic and structural studies on the Ln(III)/An(III) malate complexation. Inorg. Chem., 58, 1, 368–381. https://doi.org/https://doi.org/10.1021/acs.inorgchem.8b02474
    Técher, D., Grosjean, N., Sohm, B., Blaudez, D., & le Jean, M. (2020). Not merely noxious? Time-dependent hormesis and differential toxic effects systematically induced by rare earth elements in Escherichia coli. Environmental Science and Pollution Research, 27, 5, 5640–5649. https://doi.org/10.1007/s11356-019-07002-z
    Telcian, A.-S., Cristea, D.-M., & Sima, I. (2020). Formal concept analysis for amino acids classification and visualization. Acta Universitatis Sapientiae, Informatica, 12, 1, 22–38. https://doi.org/10.2478/ausi-2020-0002
    Thakur, P., Pathak, P. N., Gedris, T., & Choppin, G. R. (2009). Complexation of Eu(III), Am(III) and Cm(III) with dicarboxylates: Thermodynamics and structural aspects of the binary and ternary complexes. Journal of Solution Chemistry, 38, 3, 265–287. https://doi.org/10.1007/s10953-009-9373-8
    Tommasi, F., Thomas, P. J., Pagano, G., Perono, G. A., Oral, R., Daniel, ·, Lyons, M., Toscanesi, M., & Trifuoggi, · Marco. (2021). Review of rare earth elements as fertilizers and feed additives: A knowledge gap analysis. Archives of Environmental Contamination and Toxicology, 81, 531–540. https://doi.org/10.1007/s00244-020-00773-4
    Trifuoggi, M., Pagano, G., Guida, M., Palumbo, A., Siciliano, A., Gravina, M., Lyons, D. M., Burić, P., Levak, M., Thomas, P. J., Giarra, A., & Oral, R. (2017). Comparative toxicity of seven rare earth elements in sea urchin early life stages. Environmental Science and Pollution Research, 24,25, 20803–20810. https://doi.org/10.1007/s11356-017-9658-1
    Trummal, A., Lipping, L., Kaljurand, I., Koppel, I. A., & Leito, I. (2016). Acidity of Strong Acids in Water and Dimethyl Sulfoxide. J. Phys. Chem. A, 120, 20, 3663–3669. https://doi.org/10.1021/acs.jpca.6b02253
    Uchida, S., Tagami, K., Tabei, K., & Hirai, I. (2006). Concentrations of REEs, Th and U in river waters collected in Japan. Journal of Alloys and Compounds, 408–412, 525–528. https://doi.org/10.1016/J.JALLCOM.2004.12.104
    Wang, Z. M., van de Burgt, L. J., & Choppin, G. R. (2000). Spectroscopic study of lanthanide(III) complexes with aliphatic dicarboxylic acids. Inorganica Chimica Acta, 310, 2, 248–256. https://doi.org/10.1016/S0020-1693(00)00259-0
    Wojciechowska, A., Lomozik, L., & Zielifiski, S. (1987). Potentiometric and spectral studies of complex formation of La(III), Pr(III) and Lu(III) with aspartic acid and asparagine. Monatshefte Ffir Chemie, 118, 1317–1324.
    Wolfenden, R., Andersson, L., Cullis, P. M., & B Southgate, C. C. (1981). Affinities of amino acid side chains for solvent water? Biochemistry , 20, 4, 849–855. https://doi.org/https://doi.org/10.1021/bi00507a030
    Wu, G. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids, 37, 1–17. https://doi.org/https://doi.org/10.1007/s00726-009-0269-0
    Xenopoulos, M. A., Barnes, R. T., Boodoo, K. S., Butman, D., Catalán, N., D’Amario, S. C., Fasching, C., Kothawala, D. N., Pisani, O., Solomon, C. T., Spencer, R. G. M., Williams, C. J., & Wilson, H. F. (2021). How humans alter dissolved organic matter composition in freshwater: relevance for the Earth’s biogeochemistry. Biogeochemistry, 154, 2, 323–348. https://doi.org/10.1007/s10533-021-00753-3
    Xiong, Y. (2011). Organic species of lanthanum in natural environments: Implications to mobility of rare earth elements in low temperature environments. Applied Geochemistry, 26, 7, 1130–1137. https://doi.org/10.1016/J.APGEOCHEM.2011.04.003
    Xu, H., Xu, D. C., & Wang, Y. (2017). Natural indices for the chemical hardness/softness of metal cations and ligands. ACS Omega, 2, 20. https://doi.org/10.1021/acsomega.7b01039
    Yang X, Bi S, Wang X, Liu J, & Bai Z. (2003). Multimethod characterization of the interaction of aluminum ion with α-ketoglutaric acid in acidic aqueous solutions. Anal Sci., 19, 2, 273–279. https://doi.org/DOI: 10.2116/analsci.19.273
    Yin, X., Martineau, C., Demers, I., Basiliko, N., & Fenton, N. J. (2021). The potential environmental risks associated with the development of rare earth element production in Canada. Environmental Reviews, 29, 3, 354–377. https://doi.org/10.1139/er-2020-0115
    Zabiszak, M., Nowak, M., Taras-Goslinska, K., Kaczmarek, M. T., Hnatejko, Z., & Jastrzab, R. (2018). Carboxyl groups of citric acid in the process of complex formation with bivalent and trivalent metal ions in biological systems. Journal of Inorganic Biochemistry, 182, 37–47. https://doi.org/10.1016/J.JINORGBIO.2018.01.017
    Zhao, C.-M., & Wilkinson, K. J. (2015). Biotic ligand model does not predict the bioavailability of rare earth elements in the presence of organic ligands. Environ. Sci. Technol, 49, 2207–2214. https://doi.org/10.1021/es505443s
    Zhao, S. F., Chi, Z., Liu, G. L., Hu, Z., Wu, L. F., & Chi, Z. M. (2019). Biosynthesis of some organic acids and lipids in industrially important microorganisms is promoted by pyruvate carboxylases. Journal of Biosciences, 44, 2. https://doi.org/10.1007/S12038-019-9853-Y
    Zhou, T., Jhamb, S., Liang, X., Sundmacher, K., & Gani, R. (2018). Prediction of acid dissociation constants of organic compounds using group contribution methods. Chemical Engineering Science, 183, 95–105. https://doi.org/10.1016/J.CES.2018.03.005

    QR CODE