簡易檢索 / 詳目顯示

研究生: 謝品安
Pin-An Hsieh
論文名稱: 摻鈀之二維鉍氧氯奈米片在二氧化碳還原上性能的影響
Effect of Doped Pd in 2D BiOCl Nanocatalysts on The Performance of CO2 Reduction
指導教授: 江偉宏
Wei-Hung Chiang
郭俊宏
Chun-Hung Kuo
口試委員: 江偉宏
Wei-Hung Chiang
郭俊宏
Chun-Hung Kuo
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 41
中文關鍵詞: 鉍氧氯二氧化碳還原電化學甲酸奈米
外文關鍵詞: Bismuth oxychloride, palladium, CO2 reduction, electrochemistry, formate, nano
相關次數: 點閱:211下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為解決越發嚴重的二氧化碳排放過量問題,我們研發出了一種在水相合成鉍氧氯和摻雜約百分之一鈀的鉍氧氯二維奈米片之濕式化學合成法來解決排放問題。結果顯示甲酸的法拉第效率在施加電位‒0.8到‒1.2 V之間呈現火山型的趨勢且在‒1.0 V擁有最高的效率。根據臨場X光繞射我們找出可能在二氧化碳還原路徑中反應在奈米片的中間體。在電位高於‒0.5 V時,鉍金屬的特徵峰從鉍氧氯中被還原出來。然而,從‒0.5到‒0.7 V的區間只得到非常低的法拉第效率,整體包含甲酸和氫氣在鉍氧氯和摻鈀鉍氧氯只得到分別為0到9.64%和0到16.36%。這篇論文呈現兩個事實,第一,零價的鉍原子提供了催化點位於產氫及二氧化碳還原甲酸生成。第二,鈀的存在降低了在工作電極和電解液的電子轉移障礙使產氫和二氧化碳還原更加容易進行。我們相信,優化二維催化劑為二氧化碳還原之重點。


For the increasingly serious problem of carbon dioxide (CO2) over emissions we developed the water-based wet-chemical method to synthesize 2D nanosheets of BiOCl and BiOCl-Pd where the Pd was about 1% to solve the CO2 emission issues. The results showed the Faraday efficiency of formate had a volcano trend from ‒0.8 to ‒1.2 V in both cases, and the highest value with the potential at the ‒1.0 V. By in-situ synchrotron XRD, we found the possible CO2RR pathway through capturing the intermediates generated on the nanosheets. It turned out that pure Bi metal peaks generated form reduction of BiOCl in the nanosheets higher than ‒0.5 V. However, the total F. E. obtained at ‒0.5 to ‒0.7 V were very low that the H2 gas and formate were generated from 0 to 9.46% for the BiOCl and to 16.36% for the BiOCl-Pd. This thesis implied two facts, first, the Bi0 atoms serve as the catalytic sites for hydrogen production reaction and CO2 reduction reaction to generate H2 gas and formate. Second, the existence of Pd reduces the barriers of charge transfer between the working electrodes and the electrolytes which makes the HER and CO2RR take place easily. We believe, there were the critical points to optimize the 2D catalysts for CO2RR.

摘要 1 ABSTRACT 2 致謝 3 TABLE OF CONTENTS 4 LIST OF FIGURES 5 LIST OF TALES 6 CHAPETR 1 OVERVIEW 7 1.1 CARBON DIOXIDE ISSUE 7 1.2 RESEARCH MOTIVATION 7 CHAPTER 2 INTRODUCTION 9 2.1 CO2 REDUCTION REACTION (CO2RR) 9 2.2 CATALYST MATERIALS 9 2.3 ELECTROCATALYTIC SYSTEM 12 CHAPTER 3 EXPERIMENTAL 15 3.1 CHEMICALS 15 3.2 CHARACTERIZATION 15 3.3 PROCEDURE 16 CHAPTER 4 RESULTS AND DISCUSSION 19 4.1 2D NANOSHEETS OF BIOCL AND BIOCL-PD 19 4.2 SYNTHETIC PARAMETERS 24 4.3 ELECTROCATALYTIC CO2 REDUCTION REACTION (CO2RR) 25 4.4 DURABILITY OF CATALYSTS 29 CHAPETR 5 CONCLUSION 36 REFERENCES 37

1. Crowley, T. J.; Berner, R. A., Paleoclimate - CO2 and climate change. Science 2001, 292 (5518), 870-872.
2. Jing, L. Q.; Chen, C.; Hu, S. W.; Dong, S. P.; Pan, Y.; Wang, Y. X.; Lai, S. K.; Wang, Y. L.; Yang, L. X., Effects of elevated atmosphere CO2 and temperature on the morphology, structure and thermal properties of starch granules and their relationship to cooked rice quality. Food Hydrocolloids 2021, 112, 12.
3. Supronowicz, W.; Ignatyev, I. A.; Lolli, G.; Wolf, A.; Zhao, L.; Mleczko, L., Formic acid: a future bridge between the power and chemical industries. Green Chem. 2015, 17 (5), 2904-2911.
4. Eppinger, J.; Huang, K. W., Formic Acid as a Hydrogen Energy Carrier. ACS Energy Lett. 2017, 2 (1), 188-195.
5. Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X., Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem 2017, 3 (4), 560-587.
6. Razzaq, A.; In, S. I., TiO2 Based Nanostructures for Photocatalytic CO2 Conversion to Valuable Chemicals. Micromachines 2019, 10 (5), 25.
7. Hori, Y.; Murata, A.; Takahashi, R., FORMATION OF HYDROCARBONS IN THE ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE AT A COPPER ELECTRODE IN AQUEOUS-SOLUTION. Journal of the Chemical Society-Faraday Transactions I 1989, 85, 2309-2326.
8. Bernal, M.; Bagger, A.; Scholten, F.; Sinev, I.; Bergmann, A.; Ahmadi, M.; Rossmeisl, J.; Roldan Cuenya, B., CO2 electroreduction on copper- cobalt nanoparticles: Size and composition effect. Nano Energy 2018, 53, 27-36.
9. Zhou, J. W.; Cheng, J. L.; Wang, B.; Peng, H. S.; Lu, J., Flexible metal-gas batteries: a potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 2020, 13 (7), 1933-1970.
10. Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C., Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol. J. Am. Chem. Soc. 2019, 141 (32), 12717-12723.
11. Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J., Electrochemical CO2 Reduction: A Classification Problem. ChemPhysChem 2017, 18 (22), 3266-3273.
12. Sun, J. G.; Li, M. C.; Oh, J. A. S.; Zeng, K. Y.; Lu, L., Recent advances of bismuth based anode materials for sodium-ion batteries. Materials Technology 2018, 33 (8), 563-573.
13. Ye, L. Q.; Zan, L.; Tian, L. H.; Peng, T. Y.; Zhang, J. J., The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chemical Communications 2011, 47 (24), 6951-6953.
14. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS. Chemical Reviews 1995, 95 (3), 735-758.
15. Kapilashrami, M.; Zhang, Y. F.; Liu, Y. S.; Hagfeldt, A.; Guo, J. H., Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. Chemical Reviews 2014, 114 (19), 9662-9707.
16. Li, H.; Shi, J. G.; Zhao, K.; Zhang, L. Z., Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light. Nanoscale 2014, 6 (23), 14168-14173.
17. Garg, S.; Li, M. R.; Weber, A. Z.; Ge, L.; Li, L. Y.; Rudolph, V.; Wang, G. X.; Rufford, T. E., Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials. J. Mater. Chem. A 2020, 8 (4), 1511-1544.
18. Shojaeefard, M. H.; Molaeimanesh, G. R.; Nazemian, M.; Moqaddari, M. R., A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation. Int. J. Hydrog. Energy 2016, 41 (44), 20276-20293.
19. Raciti, D.; Mao, M.; Park, J. H.; Wang, C., Local pH Effect in the CO2 Reduction Reaction on High-Surface-Area Copper Electrocatalysts. J. Electrochem. Soc. 2018, 165 (10), F799-F804.
20. Varela, A. S.; Kroschel, M.; Leonard, N. D.; Ju, W.; Steinberg, J.; Bagger, A.; Rossmeisl, J.; Strasser, P., pH Effects on the Selectivity of the Electrocatalytic CO2 Reduction on Graphene-Embedded Fe-N-C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis. ACS Energy Lett. 2018, 3 (4), 812-817.
21. Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B., The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films. Appl. Nanosci. 2016, 6 (4), 485-494.
22. Liu, X. Y.; Schlexer, P.; Xiao, J. P.; Ji, Y. F.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H. J.; Ringe, S.; Hahn, C.; Jaramillo, T. F.; Norskov, J. K.; Chan, K. R., pH effects on the electrochemical reduction of CO(2) towards C-2 products on stepped copper. Nat. Commun. 2019, 10, 10.
23. Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X. Y.; Higgins, D. C.; Chan, K. R.; Norskov, J. K.; Hahn, C.; Jaramillo, T. F., Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catal. 2018, 8 (8), 7445-7454.
24. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6 (3), 183-191.
25. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L., Electronics based on two-dimensional materials. Nature Nanotechnology 2014, 9 (10), 768-779.
26. Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S., Graphene-Based Ultracapacitors. Nano Letters 2008, 8 (10), 3498-3502.
27. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H., Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology 2016, 11 (3), 218-230.
28. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347 (6217).
29. Sun, Y. F.; Gao, S.; Xie, Y., Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction. Chemical Society Reviews 2014, 43 (2), 530-546.
30. Zhang, X. D.; Xie, Y., Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chemical Society Reviews 2013, 42 (21), 8187-8199.
31. Voiry, D.; Yang, J.; Chhowalla, M., Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction. Advanced Materials 2016, 28 (29), 6197-6206.
32. Zhang, N.; Li, L. G.; Shao, Q.; Zhu, T.; Huang, X. Q.; Xiao, X. H., Fe-Doped BiOCl Nanosheets with Light-Switchable Oxygen Vacancies for Photocatalytic Nitrogen Fixation. Acs Applied Energy Materials 2019, 2 (12), 8394-8398.
33. Jin, J. R.; Wang, Y. J.; He, T., Preparation of thickness-tunable BiOCl nanosheets with high photocatalytic activity for photoreduction of CO2. Rsc Advances 2015, 5 (121), 100244-100250.

QR CODE