研究生: |
鍾鎔聲 Jung-Sheng Chung |
---|---|
論文名稱: |
高分子之IPN及 semi-IPN結構之形成及物性相關性之研究 A Study of the formation of IPN and semi-IPN structures of polymers and its Physical property relationship |
指導教授: |
邱顯堂
Hsien-Tang Chiu |
口試委員: |
馬振基
CHEN-CHI M. MA 張豐志 Feng-Chih Chang 陳登科 T.K.Chen 葛光祥 none 邱士軒 H.S.Chiu 李俊毅 none |
學位類別: |
博士 Doctor |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 混摻 、互穿網目(IPN) 、semi-IPN 、耐燃 、酚醛樹脂 、不飽和聚酯 、雙酚系環氧樹脂 、奈系環氧樹脂 、尼龍 、韌化 |
外文關鍵詞: | Blending, interpenetration network (IPN), semi-IPN, flammability, phenolic resin, unsaturated polyester, Biphenyl Epoxy, Naphthalene epoxy, Nylon, Toughening |
相關次數: | 點閱:758 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對高分子之IPN及semi-IPN結構之形成,及其物性相關性之探討:
實驗中以UP及Phenolic resin混摻,使其產生IPN結構,熱力學之研究中使用DSC及DMA來偵測模擬UP, Phenolic resin及UP/Phenolic resin混摻物之熱硬化行為,並計算及預估其硬化速率、硬化溫度、轉化率,及隨不同硬化程度之玻璃轉移點之變化,以求得樹脂系統最適當之加工參數。
UP樹脂經由DSC之動態掃描及恆溫程序與B&D動態軟體之計算,得到在100℃15分鐘達到90%之轉化率。而Phenolic resin及UP/Phenolic resin摻合物在DSC及DMA之實驗結果評估下,應選擇緩慢逐步加熱之硬化方式。
燃燒行為之研究在探究不飽和聚酯和resole type酚醛樹脂之相互穿插網目結構物之熱裂解及燃燒行為。經由熱重損失分析(TGA)探討UP/Phenolic resin摻合物之熱裂解,由氧指數(OI)探討耐燃性質之變化,並經由Non flaming程序之煙密度測定,分析燃燒時產生之發煙量。另一方面,對於燃燒所產生氣體之分析及熱釋放率(Heat Release Rate; HRR),則使用自行組裝之cone calorimeter動態燃燒偵測系統測定,模擬火場溫度757℃情形時,探討UP/Phenolic resin摻合物系燃燒時一氧化碳(CO)之濃度及HRR之變化。結果顯示,經由本質耐燃性質良好之Phenolic resin改質UP之摻合物系,無論在耐熱性或燃燒之煙、毒、熱釋放上,均有顯著之改善之效果。
在semi-IPN結構之研究中,探討在雙酚系環氧樹脂加入熱塑性材料尼龍(nylon)作為應力釋放劑(stress release agent)來降低裝材料硬化時產生之應力。實驗上利用 Izod 衝擊試驗及三點彎曲試驗探討加入尼龍對雙酚系環氧樹脂物性產生之影響;利用 Thermal Mechanical Analysis(TMA) 及Dynamic Mechanical Analysis(DMA) 偵測Tg及線膨脹係數之變化,利用pressure cook test (PCT)分析吸水性,利用耐電壓測試絕緣特性。
實驗結果顯示,加入尼龍後材料之破壞能量增加,但是機械性能略有下降,線膨脹係數(α1)下降,耐熱性略為下降,在吸濕試驗及PCT試驗發現吸水性增加,耐壓試驗中絕緣特性稍有下降
另外,再以奈系環氧樹脂基材,利用熱塑性尼龍粉末顆粒之添加,作為應力釋放劑, 用以改善奈系環氧樹脂封裝材料固化時所產生之內應力,增加材料之韌性並減少收縮,實驗中探討尼龍之添加對奈系環氧樹脂物性之影響。固化物之機械性能藉由Izod 衝擊試驗、 三點彎曲強度試驗、拉伸強度試驗、剪切接著強度試驗來評估。由TMA及DMA分析熱膨脹係數(CTE)及玻璃轉移溫度(Tg)之變化。由PCT試驗分析吸水率之變化,由絕緣破壞電壓試驗評估添加尼龍後環氧樹脂之耐電壓能力之影響。
實驗結果顯示,隨著尼龍之添加量增加時,Izod衝擊強度隨之增加,但接著強度、彎曲強度、抗拉強度會略有下降,從TMA測試結果可看出尼龍顆粒添加量對膨脹係數增加之程度,由DMA測試中可了解添加尼龍顆粒後,對材料Tg之下降幅度。隨著尼龍之添加量增加,吸水率亦會增加,絕緣破壞電壓則略為下降。
The objective of this study is to investigate the IPN structure and semi-IPN structure by blending two kinds of polymers. In our study, Differential Scanning Calorimeter (DSC) and Dynamic Mechanical Analysis (DMA) were used in this study to detect and simulate cure behavior of UP, Phenolic resin and UP/Phenolic resin blends as well as to calculate and predict the cure rate, cure temperature, conversion and changes of the glass temperature along with various cure orders so as to obtain the optimum parameters for processing.
Through the help of dynamic scanning and isothermal procedures of DSC as well as B&D dynamic software, cure data of UP resin were obtained, which was 90% of the conversion rate at 100oC was achieved after 15 minutes. However, for Phenolic resin and UP/Phenolic resin blends, gradual temperature increasing process for curing should be selected according to the test results of DSC and DMA.
The thermal degradation and combustion behavior for the interpenetration network (IPN) structure of unsaturated polyester resin and resole type of phenolic resin was studied in this report. Thermal gravimetric analysis (TGA) was used to monitor the degree of thermal decomposition for the UP/Phenolic resin IPN structure and measuring the change of the oxygen index (OI) was to describe the variation of the combustion behavior, also the smoke density was measured via a non-flaming process to detect the amount of smoke generated during the combustion.
On the other hand, a homemade cone calorimetric Dynamic Flammability Evaluation System was assembled to analysis the gas evolved and to measured the heat release rate (HRR) during the combustion. Under the simulated condition for a burning field at the temperature of 757℃, the variation of the concentration of monoxide (CO) and the HRR of the UP/Phenolic resin IPN structure was studied.
The results show that the essentially flammable UP resin is modified by phenolic resin structure to form an IPN system not only can remarkably improve the heat resistance but help to suppress the smoke, toxic and heat release during the combustion process.
As for study of semi-IPN structure, the thermoplastic nylon powder with a low melting point is added to Biphenyl Epoxy to serve as a forming stress release agent that is intended to reduce the stress resulted from Epoxy Molding Compound (EMC). The purpose of this study is to explore the physical impact and effect of the forming object after adding nylon powder unto Biphenyl Epoxy. Mechanical properties are explored through the Izod impact test and the 3-point bending test for the experiment. Thermal Mechanical Analysis and Dynamic Mechanical Analysis are conducted to probe the coefficient of thermal expansion (CTE) and the glass transition temperature (Tg). The rate of water absorption is measured via the test of pressure cook test (PCT) and insulation resistance is assessed through the insulating destruction experiment.
The results indicated that adding nylon powder could increase the fracture energy of the epoxy formed material; however, mechanical properties were decreased slightly. The TMA result showed that the CTE (α1) reduced while nylon was added and the DMA result revealed heat resistance decreased a little. The water absorption rate test and the PCT test showed the rate of water absorption increased to a small extent; however, the breakdown voltage (BDV) decreased a little bit.
In our study, we used thermoplastic nylon powder is added to Naphthalene Epoxy matrix to serve as a forming stress release agent that is intended to reduce the stress and shrinkage resulted from curing of liquid Naphthalene epoxy encapsulant. The purpose of this study is to explore the physical impact and effect of the forming object after adding nylon powder unto Naphthalene Epoxy. Mechanical properties are explored through the Izod impact test, the 3-point bending test, tensile test and lap shear adhesion test for the experiment. Thermal Mechanical Analysis and Dynamic Mechanical Analysis are conducted to probe the coefficient of thermal expansion (CTE) and the glass transition temperature (Tg). The rate of water absorption is measured via the test of pressure cook test (PCT) and insulation resistance is assessed through the insulating destruction experiment.
The results indicated that adding nylon powder could increase the Izod impact strength of the epoxy formed material; however, mechanical properties (lap shear strength、flexural strength、tensile strength) were decreased slightly. The TMA result showed that the CTE (α1) increased while nylon was added and the DMA result revealed heat resistance decreased a little. The water absorption rate test after PCT showed the rate of water absorption increased to a small extent; however, the breakdown voltage (BDV) decreased a little bit.
1. D. Zuchowska, J. Malczewski and L. Wozniak, Polymer Composites (edited by B. Sedlacek), Walter de Gruyter, Berlin (1986) P.38l
2. D.Zuchowska and D.Hlavata, European Polymer Journal, 27, (1991) P.355
3. Wen-yen Chiang, Wen-Chao Wu and Bela Pukanszky, European Polymer Journal, Vo1.30, No.5 (1994) P.573-580
4. Hajime Hara, Yoshihiko Araki and Shingo ORII, Journal of Applied Polymer Science, Vo1. 32 (1986) P.3109-3116
5. T.P.Yang, T.K. Kwei and E.M. Pearce, Journal of Applied Polymer Science, Vo1.41, (1990) P.1327-1332
6. A. Matsumoto, K.Hasegawa, A. Fukuda and K. Otsuki, Journal of Applied Polymer Science, Vo1. 43 (1991) P.365-372
7. A. Matsumoto, K.Hasegawa, A.Fukuda and K. Otsuki, Journal of Applied Polymer Science, Vo1. 44 (1992) P.205-212
8. A. Matsumoto, K. Hasegawa, A. Fukuda and K. Otsuki, Journal of Applied Polymer Science, Vo1. 44 (1992) P.1547-1556
9. A. Matsumoto, K. Hasegawa, A. Fukuda, Polymer International, 30 (1993) P.65-72
10. 化工資訊 , 第九卷, 第 2 期, (1995) P.33-40
11. C. F. Cullis, M. M. Hirschler, "The combustion of organic polymer” (1981)
12. Mc Carter, J. Consum. Prod. Flammability, 4 (1977), P.346
13. M. B. Neiman, “Aging and stabilization of polymers” (1964)
14. W. G. Schmidt, Plast. Inst. Trans. 33, (108)
15. 吳培熙、張留城, 聚合物共混改性,中國輕工業出版社, 1996, P.311
16. Richard H. Boyd, The Science of Polymer Molecules, 1996, P.330
17. J. N. Sultan, R.C. Laibie and F. J. Mc Garry, J.Apply.Polym-Sci. 6, 1971, P.627
18. S. Kunz-Douglass, P. W. R. Beaumont and M. F. Ashby, J.Material Sci.,15, 1980, P. 1109
19. W. O. Bascorn, R. Y. Ting, J. Moulton, C. K. Riew and A. R. Siebeert, Journal of Material Sci., 16, 1981, P.1657
20. L. T. Manzione and J. K. Gillham, J. Applied Polymer Science, 26, 1981, P.889
21. A. F. Yee and R. A. Pearson, J. Material Science, 21, 1986, P. 2462
22. S. Mostovoy, P.B. CrysLey, A. Lazzeri, J. Material Sci., 2, 1967, P.661
23. A. F. Yee and R.A. Pearson: NSA Contractor Report, Dec.1984, 3852
24. 吳培熙、張留城, 聚合物共混改性,中國輕工業出版社, 1996, P.312
25. A.J.kinloch, S.J.Shaw et a1, Polymer, 24, 1983, P.1341
26. A.F.Yee and R.A.Pearson, J. Material Sci., 21,1986, P.2454
27. A.J.kinloch, H.L.Yuen, J. Material Sci., 29, 1994, P. 3781
28. Jun kyung, R.E. Robertson, J. Material Sci., 27, 1992, P.161
29. 薛文仁, 國立中央大學化學工程研究所, 碩士論文 ,1994.
30. P. R. Scarito, L. G. Sperling, Polymer Eng. Sci., 19,1970, P.297
31. 王惠民、益小梁, 材料科學與工程, 中國, 3, 1990, P.16