簡易檢索 / 詳目顯示

研究生: 施鈞瀚
Jyun-Han Shih
論文名稱: 奈米纖維複合膜應用於海水淡化技術中薄膜蒸餾法的研究
A study of composite nanofiber membrane applied in seawater desalination by membrane distillation
指導教授: 蘇清淵
Ching-Iuan Su
口試委員: 邱顯堂
HSIEN-TANG CHIU
李貴琪
K.C. Lee
黃盟舜
Meng-Shun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 靜電紡絲薄膜蒸餾海水淡化
外文關鍵詞: Electrospinning, Membrane distillation, Seawater Desalination
相關次數: 點閱:277下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

靜電紡絲薄膜應用領域,包括紡織、環境工程、生醫工程、組織工程等,在環境工程方面除了空氣過濾的研究外,近年來一些研究團隊已開始研究用於水質過濾的靜電紡絲薄膜,並應用在各種水質過濾技術上。本研究的海水淡化設備為直接接觸式薄膜蒸餾系統(direct contact membrane distillation, DCMD),薄膜的製作以聚偏二氟乙烯(Polyvinylidene fluoride, PVDF)與聚二氟乙烯-六氟丙烯[poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-co-HFP]為原料,利用靜電紡絲法(Electrospinning, ES)製備奈米纖維膜,並與具有高強力的紡粘紡不織布(Spunbond)結合,形成三明治夾層結構(Spunbond-Electrospinning-Spunbond, SES)的高性能複合纖維薄膜,具備高孔隙率、低孔徑、奈米細度、高比表面積、高疏水性的特性可應用於直接接觸薄膜蒸餾系統。
薄膜的製備上,PVDF-HFP纖維膜最佳的條件為平均孔徑0.3μm、平均纖維直徑為170nm,並改善PVDF纖維膜孔洞特性上的缺點。
薄膜蒸餾之溫差參數探討中,容積溫度差於55°C時,PVDF-HFP複合纖維膜(13.28 kg/m2hr )的滲透通量為最高 ,其次為PVDF複合纖維膜(12.44 kg/ m2hr )、最低者為PTFE 商業膜(9.0kg/m2 hr )。 研究結果顯示在12小時長時間的脫鹽實驗中,PVDF複合纖維膜脫鹽率為99.9888%、PVDF-HFP複合纖維膜脫鹽率為99.9901%、PTFE商業膜脫鹽率為99.9951%。與PTFE商業膜相比較,PVDF-HFP電紡奈米纖維膜與PTFE商業膜的脫鹽效果均達到99.99%以上,兩者差異不大,且PVDF-HFP電紡奈米纖維膜於連續12小時的平均通量較PTFE商業膜產出4.28 kg/m2 hr。


The current research and application of electrospinning process on the textile engineering, biomedical engineering, tissue engineering, environment engineering. For the past few years, some research teams have been use the electrospun membrane for the liquid filtration application.
In this study, two composite nanofibrous membranes of PVDF and PVDF-HFP prepared by electrospinning process were employed in a direct contact membrane distillation (DCMD) system. The nanofiber membrane combined the high tenacity spunbond nonwoven. And this membrane was electrospun nanofiber nonwoven membrane and spunbond combined to form a sandwich structure of the folder into a SES (Spunbon-Electrospun-Sponbond) composite nanofiber membrane. It reach high porosity, low pore sizes, nanofiber grade, high specific surface area, and high hydrophobic composite membrane for the direct contact membrane distillation system.
By SEM observations, porosity analyzer technique and contact angle measurement, it indicated that the nanofibrous membrane of the average fiber diameter of 170nm and maximum pore diameters distribution of 0.3μm is the best membrane applied in DCMD system.
During 12 hours, experiment with the following conditions: Bulk temperature difference of 55°C , and both the two side flow rate of 210 mL/min, it resulted in that the permeate flux of PVDF-HFP composite membrane is higher 4.28kg/m2hr than PTFE commercial membrane. From this 12 hours experiment, the salt rejection of PVDF-HFP (99.9901%) was better than that of PVDF composite membrane (99.9888%) and was the same as that of PTFE commercial membrane (99.9951%). Consequently, the PVDF-HFP composite nanofibrous membrane is significantly increase the permeation flux and salt rejection than the PVDF composite nanofibrous membrane in the DCMD system.

中文摘要.........................................................I 英文摘要.......................................................III 致謝............................................................ V 目錄............................................................VI 圖目錄 .........................................................XI 表目錄 ........................................................XIV 第一章 緒論.....................................................1 1.1前言 .........................................................1 1.2薄膜蒸餾......................................................2 1.3薄膜蒸餾之優點及特色..........................................3 1.4 薄膜蒸餾種類.................................................4 1.5薄膜蒸餾用之薄膜須具備的特性..................................7 1.6 薄膜製作方法介紹............................................10 1.7 靜電紡絲奈米纖維薄膜........................................14 1.8 研究動機與目的..............................................20 第二章 文獻回顧與理論..........................................21 2.1 文獻回顧....................................................21 2.2 薄膜蒸餾理論................................................27 2.2.1薄膜蒸餾原理...........................................27 2.2.2溫度極化現象...........................................28 2.2.3熱量傳輸效應...........................................29 2.2.4質量傳輸效應...........................................31 2.3 靜電紡絲理論................................................34 2.3.1 靜電紡絲原理..........................................34 2.3.2 影響靜電紡絲參數..................................... 35 第三章 實驗材料與方法..........................................38 3.1實驗材料.....................................................38 3.2 實驗儀器及設備..............................................39 3.3 分析儀器....................................................39 3.4實驗流程.....................................................40 3.5實驗架構(特性要因)圖.........................................41 3.6 實驗方法....................................................41 3.6.2 靜電紡絲工程..........................................42 3.6.3 SES 高性能複合纖維薄膜製備............................42 3.7 靜電紡絲纖維薄膜表面與微細構造分析..........................43 3.7.1 孔徑分析..............................................43 3.7.2 靜電紡絲奈米纖維膜表面觀察............................44 3.7.3 接觸角測定儀..........................................45 3.7.4纖維薄膜孔隙率大小量測.................................45 3.8 薄膜蒸餾模組................................................46 3.8.1 模具設計..................................................46 3.8.2 系統迴路..................................................48 3.8.3薄膜蒸餾模組實驗參數操作...................................53 3.9 薄膜蒸餾水質分析............................................54 3.9.1 pH 值.....................................................54 3.9.2 總固體溶解量..............................................55 3.9.3 懸浮固體..................................................55 3.9.4 電導度....................................................55 第四章 結果與討論..............................................56 4.1靜電紡絲參數設定.........................................56 4.1.1固定工作電壓、流速改變溶液濃度..................... 56 4.1.1固定溶液濃度、工作電壓,改變流速................... 57 4.1.2固定濃度改變電壓....................................59 4.1.3 消除珠狀物.........................................60 4.1.4 工作距離探討.......................................61 4.1.5 滾筒收集器之轉速探討...............................63 4.1.6 紡絲溶液添加鹽類...................................65 4.2奈米纖維薄膜孔洞特性分析.................................66 4.2.1固定紡絲液量,改變轉速..............................66 4.2.2固定轉速,改變紡絲液量..............................67 4.2.3 PVDF-HFP 與 PVDF纖維膜直徑分佈之探討..............68 4.2.4 PVDF 與 PVDF-HFP纖維膜孔洞分佈之探討...............70 4.3奈米纖維薄膜孔隙率分析...................................71 4.3.1 奈米纖維薄膜真實密度測定...........................71 4.3.2 奈米纖維薄膜厚度測定...............................72 4.3.3 奈米纖維薄膜孔隙率之計算...........................73 4.4奈米纖維薄膜接觸角測定...................................73 4.5薄膜蒸餾模組參數設定探討.................................74 4.5.1 固定容積溫差,改變幫浦進水流速.....................74 4.5.2 固定幫浦進水流速,改變容積溫度差...................75 4.6薄膜蒸餾模組連續12小時實驗...............................77 4.6.1薄膜的冷水端導電度變化..............................77 4.6.2薄膜的滲透通量變化..................................78 4.6.3薄膜的脫鹽效果......................................79 4.6. 4飼水端電紡纖維膜與商業膜的結垢情形.................80 4.6. 5冷水端電紡纖維膜與商業膜的結垢情形.................87 4.7改變不織布與電紡膜層數對於薄膜蒸餾模組效能的影響.........91 4.8 薄膜蒸餾產水之水質檢測..................................93 第五章 結論....................................................97 參考文獻.......................................................100 作者簡介.......................................................109

【1】 Akili D. Khawaji, Ibrahim K. Kutubkhanah, Jong-Mihn Wie , Advances in seawater desalination technologies, Desalination 2008, 221,pp. 47–69.
【2】 喬世珊、田玉龍、史曉明、金春華、邵奎興,海水淡化技術應用,中國水利水電出版社,頁數:7 (2007年)
【3】Catherine Charcosset, A review of membrane processes and renewable energies for desalination, Desalination 2009,245,
pp. 214–231.
【4】 N Dow, J Zhang, M Duke, J Li, SR Gray, E Ostarcevic Membrane Distillation of Brine Wastes,Research Report , 2008, 63.
【5】Alaa Kullab, Andrew Martin, Membrane distillation and applications for water purification in thermal cogeneration plants, Separation and Purification Technology 2010.
【6】M. Qtaishat, D. Rana, M. Khayet, T. Mats uura, Preparation and characterization of novel hydrophobic/hydrophilicpolyetherimide composite membranes for desalination by direct contact membrane
distillation, Journal of Membrane Science 2009,327, pp.264–273.
【7】邱正勳、郭興中、張振章,薄膜分離應用技術專輯,化工技術第11卷,第12期(2003年)
【8】 Kevin W. Lawson, Douglas R. Lloyd, Review Membrane distillation, Journal of Membrane Science 1997, 124,pp.1-25.
【9】林銘進,開發薄膜蒸餾法的淡化設備,國立成功大學機械工程研究所,碩士論文(2001年)
【10】M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, Journal of Membrane Science 2006,285, pp.4–29.
【11】Joachim Koschikowski, Marcel Wieghaus, Matthias Rommel , Membrane Seawater desalination, Green Energy and Technology,chapter7 distillation for solar desalination, Spring-Verlag Berlin Heidelberg 2009.
【12】王許雲,張林,陳歡林,膜蒸餾最新研究現狀與發展,化工進展,第26卷第2期(2007年)
【13】Mohamed Khayet, Membranes and theoretical modeling of membrane distillation : A review, Advances in Colloid and Interface Science 2010.
【14】A.M. Alklaibi, NoamLior, Membrane-distillation desalination: status and potential,Desalination 2004, 171, pp.111-131.
【15】Jianhua Zhang, Noel Dow, Mikel Duke, Eddy Ostarcevic, Jun-De Li, Stephen Gray, Identification of material and physical features of membrane distillation membranes for high performance desalination,Journal of Membrane Science 2010, 349 , pp. 295–303.
【16】范舒晴,聚醯胺與聚醯亞胺膜於滲透蒸發與蒸氣揮發之研究,中原大學化學工程學系,博士學位論文(2004年)
【17】郭文正、曾添文,薄膜分離,高立圖書有限公司,頁數:4-15
(1988年)
【18】張淇芝,基材備製對氣相成長碳纖維/管的影響,國立成功大學材料科學及工程學系,碩士論文(2000年)
【19】Michelson D, Electrostatic Atomization, Bristol:Adam Hilger (1990)
【20】A Formhals, U.S Patent, 1-975-504, Oct.2(1934)
【21】Larrondo L., Manley RSJ., Electrostatic Fiber spinning form polymer melts I Experimental observations on fiber formation and properties, J .Polym Sci Polym Phys Ed 19:909-20(1981)
【22】Reneker DH and Chun I. ,Nanometer diameter fibers of polymer produced by electrospinning,Nanotechnology 7, pp.216-23(1996)
【23】Nandana Bhardwaj, Subhas C. Kundu ,Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances 2010, 28, pp.325–347.
【24】張之樺,粒狀活性碳結合薄膜系統應用於自來水處理之研究 ,土木與防災技術研究所,國立台北科技大學碩士論文(2000年)
【25】Seeram Ramakrishna, Takeshi Matsuura, Electrospun nanofibrous filtration membrane, Journal of Membrane Science 2006, 281, pp.581–586.
【26】Kyunghwan Yoon, Kwangsok Kim, Xuefen Wang, Dufei Fang, Benjamin S. Hsiao ,Benjamin Chu ,High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating, Polymer 2006, 47, pp. 2434–2441.
【27】Yimin Sang a, Fasheng Li, Qingbao Gu, Cunzhen Liang, Jiaqing Chen, Heavy metal-contaminated groundwater treatment by a novel nanofiber membrane, Desalination 2008, 223, pp.349–360.
【28】Kyunghwan Yoon, Benjamin S. Hsiao, Benjamin Chu, High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds, Journal of Membrane Science 2009, 326, pp.484–492.
【29】Decostere Bjorge, Nele Daels, Sander De Vrieze, Pascal Dejan, Tamara Van Camp, Wim Audenaert, Joel Hogie, Philippe Westbroek, Karen De Clerck, Stijn W.H. Van Hulle, Performance assessment of electrospun nanofibers for filter applications, Desalination 2009, 249, pp.942–948.
【30】Haitao Zhang, Huali Nie, Dengguang Yu, Chengyao Wu, Yunlong Zhang, Christopher. Branford White, Limin Zhu, Surface modification of electrospun polyacrylonitrile nanofibber towards developing an affinity membrane for bromelain adsorption , Desalination 2010.
【31】Ye Tian , Min Wu b, Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment, Carbohydrate Polymers 2011, 83, pp.743–748.
【32】何宗仁、劉文宗,膜蒸餾的原理與工業化應用,化工技術,第七卷,第四期(1999年)
【33】ME. Findley, “Vaporization through porous membrane”I&EC Process Design and Development. 6 ,1967, pp.226-230.
【34】L. MARTINEZ-DIEZ, M. I.VAZQUEZ-GONZALEZ, F. J. FLORIDO-DIAZ, Temperature Polarization Coefficients in Membrane Distillation, SEPARATION SCIENCE AND TECHNOLOGY 1998, 33(6) ,pp. 787-799.
【35】陳詩鋒,直接接觸薄膜蒸餾法的極化現象之研究,成功大學機械工程學系,碩士論文(1999年)
【36】M.S. El-Bourawi, Z.Ding, R.Ma, M. Khayet, A framework for better understanding membrane distillation separation process, Journal of Membrane Science 2006, 285, pp.4–29.
【37】藍智嵩,核能熱化學產氫–碘硫循環:利用直接接觸薄膜蒸餾來濃縮氫碘酸,國立清華大學工程與系統科學系,碩士論文(2008年)
【38】C. Feng , K.C. Khulbe , T. Matsuura , R. Gopal , S. Kaur , S. Ramakrishna , M. Khayet Production of drinking water from saline water by air-gap membrane, Journal of Membrane Science 2008, 311, pp. 1–6.
【39】Ruiting Huo, Zhenya Gu, Kaijie Zuo, Guangming Zhao,
Preparation and properties of PVDF-fabric composite membrane for membrane distillation, Desalination 2009, 249 ,pp. 910–913.
【40】M.Qtaishat, Khayet, T.Matsuura, Novel porous composite
hydrophobic/hydrophilic polysulfone membranes for desalination
by direct contact membrane distillation, Journal of Membrane
Science 2009, 341, pp.139–148.
【41】M. Khayet, C. Cojocaru, M.C. Garcia-Payo, Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation, Journal of Membrane Science 2010, 351,pp.234–245.
【42】Tung-Wen Cheng, Chih-Jung Han, Kuo-Jen Hwang, Chii-Dong Ho, William J. Cooper, Influence of Feed Composition on Distillate Flux and Membrane Fouling in Direct Contact Membrane Distillation, Separation Science and Technology 2010, 45, pp.967–974.

【43】Ajay K. Manna, Mou Sen, Andrew R. Martin, Parimal Pal, Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes, Environmental Pollution 2010, 158, pp.805–811.
【44】 Ke He, Ho Jung Hwang, Il Shik Moon , Air gap membrane distillation on the different types of membrane , Korean J. Chem. Eng 2011, 28(3), pp.770-777.
【45】F.A. Banat, Membrane Distillation for Desalination and Removal of Volatile OrganicCompounds from Water, Doctoral Dissertation, McGill University, Montreal, Canada(1994)
【46】Schofield RW, Fane AG and Fell CJD, Heat and mass transfer in membrane distillation, Journal of Membrane Science 1987, 33(3) , pp.299-313.
【47】M. Qtaishat a , T. Matsuura , B. Kruczek , M. Khayet, Heat and mass transfer analysis in direct contact membrane distillation,
Desalination 2008, 219, pp.272–292.
【48】劉菊蓮,直接接觸薄膜蒸餾法之熱質傳研究,清華大學動力機
械工程學系,碩士論文(2009)
【49】Shin Y M、HOhman M M、Brenner M P and Rutledge G C.,Polymer 2011, pp.42.
【50】Doshi J and Reneker D HL.,J Electrostatics 1995, pp.151.
【51】Dapeng Li, Margaret W. Frey, Yong L. Joo, Characterization of nanofibrous membranes with capillary flow porometry, Journal of Membrane Science 2006,286, pp. 104–114.
【52】A. Jena, K. Gupta, Pore volume of nanofiber nonwovens, Int. Nonwovens J 2005, 14(2) ,pp. 25–30.
【53】A. Patanaik, R.D. Anandjiwala, Hydroentanglement nonwoven filters for air filtration and its performance evaluation, J.Appl. Polym. Sci., in press, doi:101002/a,pp.30561.
【54】葉劍蟬,直接接觸式薄膜蒸餾於有機溶劑純化之研究,淡江大
學化學工程與材料工程學系,碩士論文(2009年)
【55】行政院環境保護署水質淨化現地處理網站
http://wqp.epa.gov.tw/ecological/
【56】Hongjun Jing, Xiaosong Du, Yadong Jiang , Control of Diameter and Morphology of Poly(vinylidene fluoride) Nanofibers Fabricated by Electrospinning, Proceedings of the SPIE 2009, Volume 7508, pp. 750814-750814-7.
【57】Zhizhen Zhao, Jingqing Li, Xiaoyan Yuan, Xiang Li, Yuanyuan Zhang, Jing Sheng, Preparation and Properties of Electrospun Poly(VinylideneFluoride) Membranes, Received 24 February 2004; accepted 9 December 2004.

【58】Jianfen Zheng, Aihua He, Junxing Li, Charles C. Han, Polymorphism Control of Poly(vinylidenefluoride) through Electrospinning, Macromol Rapid Commun 2007, 28, pp.2159–2162.
【59】Renuga Gopal, Satinderpal Kaur , Zuwei Ma , Casey Chan, Seeram Ramakrishna,Takeshi Matsuura, Electrospun nanofibrous filtration membrane, Journal of Membrane Science 2006,281, pp.581–586.
【60】蔡晟豪,靜電紡絲PVDF混摻F127複合膜作為生醫基材之探
討,台灣科技大學,高分子工程系,碩士學位論文(2009年)

無法下載圖示 全文公開日期 2016/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE