簡易檢索 / 詳目顯示

研究生: 游喬安
Chiao-An Yu
論文名稱: 以牛頓擺錘衝擊試驗儀驗證下水污泥 發泡無機聚合材之落石衝擊消能效果 暨其多重物理檢測
Evaluation of Sewage Sludge Adding Foamed Geopolymer as Rock-falling Impact-energy-absorbed Materials by Newton’s Cradle Apparatus in conjunction with Multi-physical Nondestructive Techniques
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 陳堯中
Yao-Chung Chen
陳立憲
Li-Hsien Chen
張大鵬
Ta-Peng Chang
鄭大偉
Ta-Wei Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 141
中文關鍵詞: 下水污泥發泡無機聚合物落石消能材多功能牛頓擺錘衝擊試驗機光學影像分析聲壓計
外文關鍵詞: Sewage Sludge, Foamed geopolymer, Energy Absorption Material in Rockfall, Multifunctional Newton's Cradle, Optical Image analysis, Sound Pressure Meter
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣因天生之地理位置、氣候條件及處於地震帶上導致天災不斷,每當豪雨及地震發生時,即伴隨著落石的崩塌,造成道路封閉,甚至導致人、車、屋傷亡毀損與經濟產值上的損失,這些問題都是需要先有社會關懷以及完善的工程設計與規劃來解決的問題,因此落石機制防護之設計施作及其相關檢測技術,均有大幅提升之必要性。
    隨著近年來環保意識的抬頭,本研究使用下水污泥做為去化固態廢棄物之目標,因臺灣每年地區每年約產生320萬噸之下水污泥,如此龐大的產量已然成為亟待解決之問題,而伴隨二十世紀無機聚合技術的發展,富含矽、鋁之原料相對於水泥具有節能、減碳、早期強度高、隔音、隔震及防火耐高溫等物理特性,搭配現有之發泡技術而產生多孔隙之發泡無機聚合材,使下水污泥之固態廢棄物轉變為環境友善之材料,可資源化再利用。
    土木工程除源頭治理之柔性工法外,於落石終端防護工法主要為明隧道與落石棚之建築,為研究落石破壞機制與明隧道工程之消能系統,本研究參考日本三層式明隧道之消能概念,使發泡無機聚合材之緩衝消能率可達71.7%之驗校,搭配團隊所開發之多功能牛頓擺錘衝擊試驗儀,結合接觸式(動態荷重計、加速度計)與非接觸式(聲壓計、光學影像)量測,進行非破壞之系統量測。
    另本研究之發泡無機聚合材未來可與3D列印技術結合,透過3D列印模板後填入發泡無機聚合漿料,以3D印材之異向性、導水性及快速製造之優點進行施作,對於工程、環境以及經濟上做到三贏的局面。


    Due to the natural geographical location, climatic conditions and the earthquake zone, natural disasters continue to occur in Taiwan. Whenever heavy rains and earthquakes occur, they are accompanied by rockfall, causing road closure, and even causing casualties of people, cars and houses and loss of economic damage. These problems need to be solved by social care and sound engineering design and planning.
    With the rise of environmental protection awareness in recent years, this study uses sewage sludge as the target of solid waste removal. Because Taiwan produces about 3.2 million tons of water sludge every year, such a huge output has become an urgent problem to be solved. With the development of geopolymer technology in the 20th century, raw materials rich in silicon and aluminum have the physical characteristics of energy absorption. Compared with cement, geopolymer technology has many benefits, such as carbon reduction, early strength, sound insulation, shock isolation, fire resistance and high temperature, etc. Combined with foaming structure technology, porous foaming geopolymer materials are produced, which can turn solid waste from sewage sludge into environmentally friendly materials that can be recycled.
    In addition to the flexible material of source control in civil engineering, the protection method of rockfall terminal is mainly used for the construction of tunnel and rockfall ceiling. In order to study the mechanism of rockfall failure and the energy dissipation system of tunnel engineering, this study refers to the concept of Japanese for three-layer tunnel to make the low energy absorption rate of foaming geopolymer materials reach 71.7%. The Multifunction Newton Cradle developed by the team is combined with contact type (dynamic load meter, accelerometer) and non-contact type (sound pressure meter, optical image) to carry out non-destructive systematic measurement.
    Another foamed geopolymer material in the future of this study can be combined with 3D printing technology. Through 3D print template after fill in the foamed geopolymer slurry. In 3D printing material anisotropy, conductivity, and can be applied in the advantages of rapid manufacturing for engineering, environmental and economic achieve win-win-win situation.

    目錄 摘要 i ABSTRACT ii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 xi 第一章 緒論 1 1.1 動機與目的 1 1.2 範圍與方法 3 1.3 架構與內容 4 第二章 文獻回顧 6 2.1下水污泥之簡介 6 2.1.1下水污泥之來源及處理程序 6 2.1.2下水污泥之物理與化學特性 8 2.1.3下水污泥處置方式 9 2.1.4迪化下水污泥之性質 10 2.2 無機聚合材之簡介 11 2.2.1 無機聚合材之組成 12 2.2.2 無機聚合材之特性 13 2.2.3 無機聚合材之結構與反應機制 15 2.2.4 無機聚合材孔隙控制 18 2.2.5 無機聚合材之配比參考 20 2.3 落石發生之特徵探討 22 2.3.1 落石崩落之影響因子 22 2.3.2 落石運動特性 24 2.4 落石防護工法 28 2.4.1 剛性防護工法 30 2.4.2 柔性防護工法 32 2.4.3 剛-柔性三層式明隧道緩衝機制 33 2.5 消能構材與能量吸收效率 35 2.6 影像量測與聲壓分析概述 36 2.6.1 光學-影像技術與位移場量測 36 2.6.2 聲學-聲壓值量測與分貝計量 39 第三章 試驗架構與執行 40 3.1 試驗規劃與流程 40 3.2 試驗材料 41 3.2.1 試體原料說明 41 3.2.2 發泡劑選用 48 3.2.3 設計試體尺寸與製備 49 3.2.4 發泡倍率之量測 53 3.2.5 基本物理性質量測與固體含量試驗 55 3.3 試驗儀器與設備 57 3.3.1 多功能牛頓擺錘試驗儀 57 3.3.2 接觸式量測系統-加速度計與動態荷重計 63 3.3.3 非接觸式量測系統-光學影像量測 68 3.3.4 非接觸式量測系統-聲學量測 77 3.4 試驗施作流程 80 3.4.1單軸抗壓試驗 80 3.4.2牛頓擺錘衝擊試驗82 第四章 實驗結果與分析84 4.1 試體代號描述85 4.2 基本物理性質試驗87 4.3 毒性溶出試驗(TCLP)91 4.4 力學試驗-靜態單軸抗壓試驗92 4.4.1 壓縮性能求算92 4.4.2 消能材應力-應變曲線 95 4.4.3 能量消能效率97 4.5 牛頓擺錘衝擊試驗-接觸式量測系統100 4.5.1 接觸式系統-動態荷重計100 4.5.2 接觸式系統-加速度106 4.6 牛頓擺錘衝擊試驗-非接觸量測系統108 4.6.1 非接觸式系統-光學影像量測108 4.6.2 非接觸式系統-聲學聲壓計量測120 4.7迪化下水污泥與石門水庫淤泥之消能率比較122 第五章 結論與建議128 5.1 結論128 5.2 建議130 參考文獻132 附錄一 委員意見回覆表136 附錄二 廢棄物檢驗報告138 附錄三 符號說明表139

    [1]葉俊鋒,下水污泥高溫好氧消化減量技術動力學特性之研究,碩士論文,國立台北科技大學,環境工程與管理研究所,台北,2009。
    [2]歐陽嶠暉,下水道工程學,2007。
    [3]鄭大偉,「無機聚合技術的發展應用及回顧」,礦治季刊,第五十四卷,第一期,2010,第140-157頁。
    [4]王克俭 (譯),地聚合物化學及應用,中國,國防工業出版社,2011,Davidovits, J.,2008。
    [5]傅冠華,利用熱處理後下水污泥合成無機聚合材料之研究,碩士論文,國立台北科技大學資源工程系,台北,2013。
    [6]林育緯,不同激發劑對爐石飛灰無機聚合物工程性質之影響,碩士論文,國立臺灣科技大學營建工程系,台北,2013。
    [7]小林一隆,「日本落石對策概論」,太魯閣峽谷旅遊安全提升研討會,花蓮,台灣,2013。
    [8]日本道路協會,「日本落石對策便覽」,日本道路協會,pp.9-204,2000。
    [9]佐藤昌志、岸德光、松岡健一,「三層緩衝構造傳達衝撃力計算公式化」,構造工學論文集,42A,1996,pp.1337-1346
    [10]王亦惟,發泡無機聚合物之開發及耐熱性能研究,碩士論文,國立台北科技大學土木與防災研究所,台北,2009。
    [11]田島與典、岩崎征夫、陳立憲、徐紳翔,「落石防治之BRN柔性工法設計與施工」,地工技術NO.138,2013,pp.27-38。
    [12]李建輝,「發泡聚苯乙烯(EPS)作為明隧道落石緩衝消能構材之成效驗證」,碩士論文,國立台北科技大學土木防災所,2015。
    [13]李維峰,「山區路邊坡崩塌防治工法最佳化研究(二)」,行政院交通部,2004,pp.7-40。
    [14]林利國,「土木新工法」,全威圖書有限公司,2002,pp.159-170。
    [15]英士特公司,CEAST 9350落重式衝擊試驗機,http://www.instron.com.tw/zh-tw
    [16]國家災害防救科技中心(NCDR),「國家災害防救科技中心災害資料查訊系統」, https://den.ncdr.nat.gov.tw/Search
    [17]陳勁銓,「多功能牛頓擺錘結合影像分析於防落石衝擊構材之初探」,碩士論文,國立台北科技大學土木防災所,2015。
    [18]陸珺華,「粒子影像測速法於複合流體行為之探討」,碩士論文,國立台北科技大學土木防災所,2015。
    [19]盧子興,「泡沫塑料力學性能研究綜述」,力學進展,第26卷第3期,1996,pp.306-320。
    [20]盧勁宏,「由球與牆面濕碰撞之聲壓訊號量測水平液膜厚度及黏滯係數之新方法」,碩士論文,國立台灣大學機械工程學研究所,2016。
    [21]霍銀磊,「基於能量吸收效率的泡沫塑料缓冲材料选择」,中國塑料期刊,2007
    [22]張天益,「發泡型無機聚合物的研究」礦治季刊,第六十三卷,第一期,2011年,第49-59頁。
    [23]陳志賢,含矽質廢棄物之無機聚合物,博士論文,國立成功大學土木研究所,台南,2009。
    [24]楊立昌,無機聚合綠色水泥收縮性質與工作性質改善之研究,碩士論文,國立台北科技大學資源工程系,台北,2014。。
    [25]SAM協會,「SAM工法設計與施工手冊」,SAM協會,2011,pp.1-12.
    [26]Davidovits, J., "Geopolymers Inorganic polymeric new materials, " Journal of Thermal Analysis, vol. 37, no 8 , 1991, pp 1633-1656.
    [27]Davidovits, J., "Fire proof geopolymeric cements," 99 geopolymer international conference proceedings, France, 1999.
    [28]Camera Calibration Toolbox for MATLAB. Available from: 2013, .http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
    [29]Chau, K.T., Wong, R.H.C. and Wu, J.J. "Coefficient of restitution and rotational motions of rockfall impacts" International Journal of Rock Mechanics and Mining Science, January 2002, Vol. 39, pp. 69-77 (SCI journal published by Elsevier).
    [30]Chen, W., Hao, H., Hughes, D., Shi, Y., Cui, J. and Li, Z.X. "Static and dynamic mechanical properties of expanded polystyrene" Materials & Design, , 2015, pp.170-180.
    [31]Gama, B.A, Lopatnikov, S.L, & Gillespie, J.W. "Hopkinson bar experimental technique: a critical review." Applied Mechanics Reviews, 57(4), 2004, pp.223-250.
    [32]Gent, A. N. & Thomas, A. G.,"The Oeformation of Foamed Elastic Materials,"J.Appl. Polymer. Sci.,1959, pp.107-113.
    [33]Lin, L.K., Chen, L.H., and Chen, R.H.L.,"Evaluation of geofoam as a geotechnical construction material." Journal of Materials in Civil Engineering. 2010, pp.160-169.
    [34]Ozturk, U.E., Anlas, G.,"Energy absorption calculations in multiple compressive loading of polymeric foams,"Materials and Design 30, 2009, pp.15-22.
    [35]Peila, D., Oggeri, C., and Castiglia, C." Ground reinforced embankments for rockfall protection: Design and evaluation of full scale tests." Landslides, 4(3),2007, 255-265.
    [36]Avalle, M., Belingardi, G., & Montanini, R.," Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram." International Journal of Impact Engineering, 25(5), 2001, pp.455-472.
    [37]Shi, S.Q., Wang, M., Peng, X.Q., and Yang, Y.K., "A new-type flexible rock-shed under the impact of rock block: initial experimental insights." Natural Hazards and Earth System Science, 13(12), 2013, pp.3329-3338.
    [38]Sutton, M.A.,Orteu, J. J.,Schreier, H., "Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications." Springer Science & Business Media, 2009, pp.1-116.
    [39]Thielicke, W. and Stamhuis, E.J., "PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB." Journal of Open Research Software 2(1)30, 2014, DOI: http://dx.doi.org/10.5334/jors.bl
    [40]Yang, Y.S., Huang, C.W., and Wu, C.l., "A simple image‐based strain measurement method for measuring the strain fields in an RC‐wall experiment." Earthquake Engineering & Structural Dynamics, 41(1), 2012 , pp.1-17.
    [41]Xu, H. and V.Deventer, J. S. J., "The geopolymerisation of alumino-silicate minerals," International Journal of Mineral Processing, vol. 59, no. 3, 2000, pp 247-266.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2024/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE