簡易檢索 / 詳目顯示

研究生: 陳震
Chen-Chen
論文名稱: 新型整合型三相交錯式耦合電感設計與研製
Design and Implementation of a Novel Three-Phase Interleaved Integrated Coupled Inductor
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 劉宇晨
none
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 133
中文關鍵詞: 耦合電感新型鐵心架構繞組部分分繞磁通抵消
外文關鍵詞: coupled inductor, novel core structure, part divided winding, flux cacellation
相關次數: 點閱:360下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文提出一個新型整合型三相交錯式耦合電感,在每一相都可獲得相同感量的對稱新型耦合電感架構,利用鐵心整合的方式大幅減少電感體積,且透過磁通耦合降低電感鐵心損耗。文中提出磁阻模型用以解釋耦合感量與漏感量的比例,以及耦合係數α對於磁阻的影響。針對繞組部分,提出繞組部分分繞的方式,得到對稱的反向耦合繞組,並抵消直流磁通,達成高頻的應用下較小感量的需求。此外,為了減少鐵心損耗,移除鐵心結構的中心柱,提出新增體積增加漏感磁路的方式,避免工作週期大於66%時,會發生磁通的二Magnet以及實驗驗證在切換頻率1MHz、輸入電壓為50V和輸出功率為100W的條件下,新型整合型三相交錯式耦合電感得到較低的鐵心損耗。


This thesis proposed a three-phase interleaved boost converter with a novel integrated coupling inductor that can obtain same inductance from each phase. By core integration to reduce volume of inductor and decrease core loss via flux coupled. Expression ratio of coupling inductance and leakage inductance by reluctance model and effect of coupling coefficient in this thesis. For method of winding, this thesis also proposed part divided winding to obtain the symmetry inversely coupled winding which cancel dc flux and get lower inductance for high frequency application, too. In addition, take out the center leg to decrease core loss and added new magnetic path for increase leakage inductance to avoid secondary flux cancellation which caused inductor lost ability for limitation current. Finally, via magnetic simulation which called Magnet and test under condition of switching frequency 1MHz, 50V input voltage and 100W output watts to verify the three-phase interleaved boost converter with a novel integrated coupling inductor can get lower core loss.

摘 要1 Abstractiv 誌 謝v 目 錄vii 圖索引ix 表索引xiii 第一章緒論1 1.1研究動機與目的1 1.2論文內容大綱5 第二章整合型多相交錯式耦合電感原理分析7 2.1整合式耦合電感原理及介紹7 2.2雙相交錯式耦合電感數學模型10 2.3三相交錯式耦合電感數學模型23 第三章整合型三相交錯式耦合電感分析27 3.1穩態動作時序分析27 3.1.1動作時序模式一(D<33%)27 3.1.2動作時序模式二(33%≤D<66%)31 3.1.3動作時序模式三(66%≤D)34 3.2穩態電感電流漣波量值與耦合方向關係之分析38 3.3耦合電感繞組方式對於等效感量及電流漣波之影響42 第四章整合型三相交錯式耦合電感形狀設計和磁路分析54 4.1三相耦合電感形狀設計54 4.1.1設計條件54 4.1.2形狀外觀設計56 4.1.3繞線方式設計64 4.2三相耦合電感磁路分析69 4.2.1三相耦合電感磁路模型69 4.2.2氣隙與耦合係數之分析73 4.3三相耦合電感與傳統電感之磁模擬分析81 4.3.1比較條件81 4.3.2動作時序分析83 第五章無中心柱之整合型三相交錯式耦合電感設計88 5.1整合型耦合電感有無中心柱差別之分析88 5.2無中心柱之三相耦合電感形狀設計92 第六章實驗量測結果108 6.1實驗量測波形108 6.2實驗量測數據112 第七章結論以及未來展望113 7.1結論113 7.2未來展望113 參考文獻115

[1] 劉宇晨,交錯式升壓型功率因素修正器之自適應斜率補償,國立台灣科技大學電子工程系博士論文,2015年。
[2] J. Imaoka, M. Yamamoto, Y. Nakamura and T. Kawashima, “Analysis of Output Capacitor Voltage Ripple in Multi-Phase Transformer-Linked Boost Chopper circuit,” IEEJ Journal IA, Vol. 2, No. 5, pp. 252–260, 2013.
[3] J. Zhu and A. Pratt, “Capacitor Ripple Current in an Interleaved PFC Converter,” IEEE Trans. Power Electron, Vol.24, No.6, pp. 1506–1514, June. 2009.
[4] F. Yang, X. Ruan, Y. Yang and Z. Ye, “Interleaved Critical Current Mode Boost PFC Converter with Coupled Inductor,” IEEE Trans. Power Electron. Vol. 26, No. 9, pp. 2404–2413, Sept. 2011.
[5] C.Wang, M. Xu, B. Lu and F. C. Lee, “New Architecture for MHz Switching Frequency PFC,” in Proc. IEEE Applied Power Electronics Conference (APEC), 2007, pp. 179–185.
[6] P. Wong, Performance improvement of multi-channel interleaving voltage regulator modules with integrated coupling inductors,
Ph. D dissertation, Virginia Tech, Blacksburg, VA, Mar, 2001, pp. 75-77.
[7] J. C. Schroeder and F. W. Fuchs, “Detailed Characterization of Coupled Inductors in Interleaved Converters Regarding the Demand for Additional Filtering,” in Proc. IEEE Energy Conver. Congr and Expo. (ECCE), pp. 759–766, 2012.
[8] K. J. Hartnett, J. G. Hayes, M. G. Egan and M. S. Rylko, “CCTT-Core Split-Winding Integrated Magnetic for High-power DC-DC Converters,” IEEE Trans. Power Electron, Vol. 28. pp. 4970–4984, Nov. 2013.
[9] W. Yu, H. Qian and J. Lai, “Design of High-Efficiency Bidirectional DC–DC Converter and High-Precision Efficiency Measurement,” IEEE Trans. Power Electron, Vol. 28, No. 3, pp. 650–658, Mar. 2010.
[10] M. Hirakawa, M. Nagano, Y. Watanabe, K. Andoh, S. Nakatomi and S. Hashino, “High Power Density DC/DC Converter using the Close-Coupled Inductors,” in Proc. IEEE Energy Conver. Cong. Expo. (ECCE), 2009, pp. 1760–1767.
[11] M. Hirakawa, M. Nagano, Y. Watanabe, K. Andoh, S. Nakatomi, S. Hashino and T. Shimizu, “High Power Density Interleaved DC/DC Converter using a 3-phase Integrated Close-Coupled Inductor Set aimed for Electric Vehicle,” in Proc. IEEE Energy Conver. Cong. Expo. (ECCE), 2010, pp. 2451–2457.
[12] M. Nakahama, M. Yamamoto and Y. Satake, “Trans-linked Multi-phase Boost Converter for Electric Vehicle,” in Proc. IEEE Energy Conver. Cong. Expo. (ECCE), 2010, pp. 2458–2466.
[13] J. Imaoka, M. Yamamoto, Y. Nakamura and T. Kawashima, “Analysis of Output Capacitor Voltage Ripple in Multi-Phase Transformer-Linked Boost Chopper circuit,” IEEJ Journal IA, Vol. 2, No. 5, pp. 252–260, Apr. 2013.
[14] U. Sebastian and P. Johannes, “Current-balancing Controller Requirements of Automotive Multi-phase Converters with Coupled Inductors,” in Proc. IEEE Energy Conver. Cong. Expo. (ECCE), 2012, pp. 372–379.
[15] M. Takao and M. Miyaki, “Future Trends and Development Trends in the Field of Powertrain Control Systems,” Denso Technical Review, Vol. 11, No. 1, pp. 10–20, Sept. 2006.
[16] J. Zhu and A. Pratt, “Capacitor Ripple Current in an interleaved PFC Converter,” IEEE Trans. Power Electron, Vol. 24, No. 6, pp. 1506–1514, June. 2009.
[17] F. Musavi, W. Eberle and W. G. Dunford, “A High-Performance Single-Phase Bridgeless Interleaved PFC converter for Plug-in Hybrid Electric Vehicle Battery Chargers,” IEEE Trans. Ind. Appl, Vol. 47, No. 4, pp. 1833–1843, July. 2011.
[18] J. Imaoka, Y. Ishikura, T. Kawashima and M. Yamamoto, “Optimal Design Method for Interleaved Single-phase PFC Converter with Coupled Inductor,” in Proc. IEEE Energy Conver. Cong. Expo. (ECCE), 2011, pp. 1807–1812.
[19] F. Yang, X. Ruan, Y. Yang and Z. Ye, “Interleaved Critical Current Mode Boost PFC ConverterWith Coupled Inductor,” IEEE Trans. Power Electron, Vol. 26, No. 9, pp. 2404–2413, Sept. 2011.
[20] M. Hirakawa, M. Nagano, Y. Watanabe, K. Andoh, S. Nakatomi and S.Hashino, “High Power Density DC/DC Converter using the Close-Coupled Inductors,” in Proc. IEEE Energy Conver. Cong. Expo. (ECCE), 2009, pp. 1760–1767.
[21] M. Hirakawa, M. Nagano, Y. Watanabe, K. Andoh, S. Nakatomi, S. Hashino and T. Shimizu, “High Power Density Interleaved DC/DC Converter using a 3-phase Integrated Close-Coupled Inductor Set aimed for Electric Vehicle,” in Proc. IEEE Energy Conver. Cong. Expo. (ECCE), 2010, pp. 2451–2457.
[22] J. Zhou, High frequency, high current density voltage regulators,
Ph. D Dissertation, Virginia Tech, Blacksburg, VA, Apr. 2005.
[23] Jieli Li, Charles R. Sullivan, Aaron Schultz, “Coupled-inductor design optimization for fast-response low voltage DC-DC converters,” in Proceedings of APEC - Applied Power Electronics Conf. pp. 817–823 vol. 2, Mar, 2002.
[24] P. Zumel, O. Garcia, J. A. Cobos and J. Uceda, “Tight magnetic coupling in multiphase interleaved converters based on simple transformers,” in Proc. IEEE APEC, 2005, Vol. 1, No. 5, pp. 385–391.
[25] Y. Dong, “Investigation of Multiphase Coupled-Inductor Buck Converters in Point-of-Load Applications,” Ph. D dissertation, Virginia Tech, Blacksburg, VA, Mar, 2009.

無法下載圖示 全文公開日期 2021/08/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2021/08/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE