簡易檢索 / 詳目顯示

研究生: 黃田勝
Tien-sheng Huang
論文名稱: 使用步階阻抗濾波器研製低相位雜訊微波壓控振盪器
Development of Low-phase Noise Microwave Voltage-Controlled Oscillators using Stepped-Impedance Resonator Filters
指導教授: 曾昭雄
Chao-hsiung Tseng
口試委員: 黃建彰
Chien-Chang Huang
馬自莊
Tzyh-Ghuang Ma
王蒼容
Chun-Long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 49
中文關鍵詞: 步階阻抗濾波器振盪器
外文關鍵詞: Stepped-Impedance Resonator Filters, Oscillators
相關次數: 點閱:188下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要係使用具寬頻抑制止帶之濾波器作為選頻元件研製迴授振盪器,由於濾波器具有較單一共振器優異之品質因數及諧波抑制之特性,因此可有效改善振盪器之相位雜訊效能。本論文使用印刷電路板及砷化鎵積體電路製程研製濾波器型式之迴授壓控振盪器。電路板電路部分,使用二階及三階濾波器研製振盪器,其結果呈現於論文第三章中。當使用之濾波器階數愈高,亦即該選頻元件品質因數較佳時,可獲致較佳之相位雜訊效能。使用砷化鎵積體電路製程設計振盪器主要用以驗証該新式振盪電路架構實現於積體電路中的可能性。


The aim of this thesis is to use a harmonic-suppressed filter as a frequency selective element, and then apply to design a feedback oscillator. Since the filter has a higher quality factor than that of a single resonator, and has the harmonic suppressions, the oscillator designed with a filter can improve the phase noise performance. This thesis use the printed circuit board (PCB) and the GaAs integrated circuit (IC) fabrication process to implement feedback voltage-controlled oscillator (VCO) based on the developed filters. For the PCB approach, the 2-pole and 3-pole filters are employed to design the VCOs, and their results are presented in Chapter 3. As a high order filter is adopted, namely the frequency selective element with a higher quality factor, the oscillator will achieve a better phase-noise performance. In addition, the proposed filter-based oscillator are re-designed and fabricated in the GaAs IC process to demonstrate the potential of realizing this type of oscillator in the IC process.

摘要 i Abstract ii 目錄 iii 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻探討 2 第二章 迴授式振盪器工作原理與複數品質因數 5 2-1 迴授式振盪器 5 2-2 複數品質因數 7 第三章 使用印刷電路板研製低相位雜訊壓控振 盪器 10 3-1 使用雙線傳輸線為基礎之步階阻抗濾波器設計 10 3-1-1 雙線傳輸線之步階阻抗共振器 10 3-1-2 使用電耦合實現二階步階阻抗濾波器 14 3-1-3 使用混耦合實現二階步階阻抗濾波器 17 3-2 以步階阻抗濾波器為基礎之壓控振盪器研製 20 3-2-1 以電耦合步階阻抗濾波器為基礎之壓控振盪器研製 20 3-2-2 以混耦合步階阻抗濾波器為基礎之壓控振盪器研製 24 3-2-3 以三階步階阻抗濾波器為基礎之壓控振盪器研製 27 3-3 振盪器之比較與討論 31 第四章 使用砷化鎵積體電路研製以濾波器為核心之壓控振盪器 32 4-1 使用步階阻抗濾波器研製壓控振盪器 32 4-1-1 雙線傳輸線之二階步階阻抗濾波器 32 4-1-2 使用步階阻抗濾波器研製壓控振盪器 32 4-2 以縮小化環型共振器研製壓控振盪器 39 4-2-1 縮小化環型共振器 39 4-2-2 以環型共振器研製壓控振盪器 42 第五章 結論 46 參考文獻 47

[1] Kai Chang, RF and Microwave Wireless Systems, New York: John Wiley & Sons, 2000.
[2] J. Choi, M. Nick, and A. Mortazawi, “Low phase-noise planar oscillators employing elliptic-response bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1959-1965, Aug. 2009.
[3] J. Choi, M. H. Chen, and A. Mortazawi, “An X-band low phase noise oscillator employing a four-pole elliptic-response microstrip bandpass filter,” IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, HI, 2007, pp. 1529-1532.
[4] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp.329-330, Feb. 1966.
[5] M. Nick and A. Mortazawi, “Low phase-noise planar oscillators based on low-noise active resonators,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1133-1139, May. 2010.
[6] C.-H. Tseng, Y.-W. Huang, and C.-L. Chang, “Microwave low phase noise oscillators using T-shaped stepped-impedance-resonator filters, “IET Microw. Antennas Propag., vol. 6, no. 12, pp. 1374–1380, Sep. 2012.
[7] Y.-W. Huang, C.-L. Chang and C.-H. Tseng, “Filter-based low phase-noise microwave oscillators,” in Proc. 22nd Asia-Pacific Microwave Conf., Yokohama, Japan, Dec. 2010, pp.481-484.
[8] C.-L. Chang and C.-H. Tseng, “Design of low phase-noise oscillator and voltage-controlled oscillator using microstrip trisection bandpass filter, ”IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 622-624, Nov. 2011.
[9] C.-H. Tseng and C.-L. Chang, “ Design of low phase-noise microwave oscillator and wideband VCO based on microstrip combline bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3151-3160, Oct. 2012.
[10] C.-L. Chang and C.-H. Tseng, “Design of microwave oscillator and voltage-controlled oscillator with second and third harmonic suppressions,” in Proc. 23rd Asia-Pacific Microwave Conf., Melbourne, VIC, Dec.2011, pp.876-879.
[11] C.-L. Chang and C.-H. Tseng, “Design of low phase-noise microwave oscillators using two-pole coupled-resonator filters with electric, magnetic, and mixed couplings,” in Proc. 24th Asia-Pacific Microwave Conf., Kaohsiung, Dec.2012, pp.1106-1108.
[12] C.-W. Tang, M.-G. Chen, and C.-H. Tsai, “Miniaturization of microstrip branch-line coupler with dual transmission lines,” IEEE Microw. and Wireless Compon. Lett., vol.18. no.3, Mar. 2008.
[13] Behzad Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, 2001.
[14] T. Ohira, “Rigorous Q factor formulation for one- and two-port passivelinear networks from an oscillator noise spectrum viewpoint,” IEEETrans. Circuits Syst. II, vol. 52, no. 12, pp. 846–850, Dec. 2005.
[15] T. Ohira and K. Araki, “Oscillator frequency spectrum as viewed from resonant energy storage and complex Q factor,” IEICE Electron. Express, vol. 3, no. 16, pp. 385-389, Aug. 2006.
[16] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, New York: John Wiley & Sons, 1990.
[17] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 12, pp. 1413–1417, Dec. 1980.
[18] J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Application.
New York: Wiley, 2001.
[19] SIEMNS, NPN Silicon RF Transistor BFP 405 Data Sheet, SIEMNS Inc., Munich, Germany, 1998 [Online] Available: http://pdf.datasheetcatalog.com/datasheet /siemens/Q62702-F1592.pdf
[20] SKYWORKS, SMV123x Series: Hyperabrupt Junction Tuning Varactors Data Sheet, Skyworks Solutions Inc., Woburn, Massachusetts, USA, 2009 [Online] Available: http://www.skyworksinc.com/uploads/documents/200058Q.pdf
[21] M. Bao, Z. Lan, M. Wojtowicz, I. Smorchkova, R. Coffie, R. Tsai, B. Heying, M. Truong, F. Fong, M. Kintis, C. Namba, A. Oki, and T. Wong, “A Q-band low phase noise monolithic AlGaN/GaN HEMT VCO,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 7, pp. 425–427, Jul. 2006.
[22] A. Kurdoghlian, M. Sokolich, M. Case, M. Micovic, S. Thomas, and C. H. Fields, “38-GHz low phase noise CPW monolithic VCOs implemented in manufacturable AlInAs/InGaAs HBT IC technology,” in Proc. IEEE GaAs IC Symp., 2000, pp. 99–102.
[23] K. Riepe, H. Leier, A. Marten, U. Guttich, J. M. Dieudonne, and K. H. Bachem, “35–40 GHz monolithic VCO’s utilizing high-speed GaInP/GaAs HBT’s,” IEEE Microwave Guided Wave Lett., vol. 4, pp. 274–276, Aug. 1994.
[24] S. Ko, J. G. Kim, T. Song, E. Yoon, and S. Hong, “Ka- and Q-band CMOS frequency sources with X-band quadrature VCO,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2789–2800, Sep. 2005.
[25] J. Lin, Y. K. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, A. Tate, R. F. Kopf, and R. W. Ryan, “Ka-band monolithic InGaAs/InP HBT VCO’s in CPW structure,” in IEEE Microwave Guided Wave Lett., vol. 5, pp. 379–381, Nov. 1995.
[26] H. Li and H. M. Rein, “Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 184–191, Feb. 2003.
[27] J. Hilsenbeck, F. Lenk, W. Heinrich, and J. Wurfl, “Low phase noise MMIC VCOs for Ka-band applications with improved GaInP/GaAs-HBT technology,” in IEEE GaAs IC Symp. Dig., 2003, pp. 223–226.
[28] A. Kurdoghlian, M. Mokhtari, C. H. Fields, M. Wetzel, M. Sokolich, M. Micovic, S. Thomas, III, B. Shi, and M. Sawins, “40 GHz fully integrated and differential monolithic VCO with wide tuning range in AlInAs/InGaAs,” in Proc. GaAs Integrated Circuits Symp. Dig., Oct. 2001, pp. 129–132.
[29] L. Zhang, R. Pullela, C.Winczewski, J. Chow, D. Mensa, S. Jaganathan, M. Rodwell, and R. Yu, “A 37~50 GHz InP HBT VCO IC for OC-768 fiber optic communication application,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., 2002, pp. 85–88.

QR CODE