簡易檢索 / 詳目顯示

研究生: 胡廷菁
Ting-Jing Hu
論文名稱: 錳鋁鋼的層狀反應相變化研究
The study of lamellar structures from the cellular reaction in an Fe-C-Mn-Al alloy
指導教授: 鄭偉鈞
Wei-chun Cheng
口試委員: 顏怡文
Yee-wen Yen
雷添壽
Tien-Shou Lei
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 157
中文關鍵詞: 鐵錳鋁層狀反應相變化k-碳化物M23C6碳化物
外文關鍵詞: Fe-C-Mn-Al, cellular reaction, k-carbide, phase transformations, M23C6 carbide
相關次數: 點閱:293下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究四元的鐵-17.9錳-8.38鋁-0.85碳合金鋼的低溫相變化。經高溫熱處理後以淬水的固溶處理及空冷方式冷卻至室溫,以及將固溶處理後之合金作低溫的恆溫熱處理後,合金鋼內產生至少三種型式的相變化。首先為g’相的析出反應:當合金鋼於高溫經空冷方式冷卻後,非常細小的g’晶粒會均勻的分佈於沃斯田體基地內;這是於冷卻過程中,高溫過飽和的沃斯田體(go)會經由析出反應方式,分解為g’相與另一沃斯田體相g”),其反應式為:go->g'+g”。第二類的相變化形式為初析反應,其為於低溫時發生的共析反應的前反應,其反應如下:合金於875℃以下溫度熱處理後,過飽和沃斯田體會經由初析反應,藉由肥粒體(a)或是k-碳化物的析出,而成為低溫較穩定的沃斯田體(g),其反應式為:go->a+k+g;晶界k-碳化物、晶界肥粒體、(g+k)層狀組織、(a+k+g)層狀組織、與(a+k)波來體,皆為此初析反應的產物。第三類的相變化則為共析反應:合金於600℃的恆溫處理後,過飽和沃斯田體會經由初析反應而先析出低溫穩定的k-碳化物與肥粒體,以降低沃斯田體基地(g)的鋁含量;此二種低溫相會形成波來體層狀組織;而後發展的層狀波來體內會有M23C6碳化物出現,此種相變化是為共析反應,其反應式為:g->a+k+M23C6。


Three kinds of phase transformations of an Fe-17.9 Mn-8.38 Al-0.85 C (wt%) alloy at low temperatures have been studied. The steel underwent solution heat treatment at 1100℃ and isothermal holding at low temperatures. Decomposition of austenite took place after the steel was heat treated at 1100℃ and followed by air-cooling. Coherent ultra-fine particles of g’ phase precipitated homogeneously in the austenite matrix during cooling. These ultra-fine particles could only be detected in TEM dark-field images. The supersaturated austenite (go) decomposed into g’ phase and another austenite (g”) through precipitation transformation. The overall transformation is as follows:go->g'+g”. A pro-eutectoid reaction happened after isothermal holding of the alloy at temperatures below 875℃-carbide precipitate in the austenite matrix (g) to reduce the solute content of the supersaturated austenitek-carbide (k) and ferrite (a) appear as grain boundary precipitates and cellular precipitates. The cellular precipitates are composed of lamellae of either (g+k),(a+k+g) or (a+k).Various lamellae may co-exist in the austenite. The proeutectoid transformation is go->a+k+g. The third form of phase transformation is the eutectoid reaction for the decomposition of retained supersaturated austenite into ferrite,k-carbide and M23C6 carbide after the precipitation of the proeutectoid k-carbide and ferrite. However, this reaction could only be observed in the steel at 600℃. The eutectoid reaction is in the form ofg->a+k+M23C6。

第一章 前 言 第二章 文獻回顧 2.1 擴散型相變化 ............................................................................... 4 2.2 層狀反應 ....................................................................................... 5 2.3 合金鋼中的碳化物........................................................................ 6 2.4 鐵碳系統的共析反應 .................................................................. 10 第三章 實驗方法 3.1 合金冶煉 ..................................................................................... 22 3.2 鑄錠加工 ..................................................................................... 23 3.3 熱處理 ......................................................................................... 23 3.4 試片製作 ..................................................................................... 25 3.5 分析儀器 ..................................................................................... 29 第四章 結果與討論 4.1 低溫恆溫處理 ............................................................................. 39 4.2 ’相的析出 ................................................................................... 49 4.3層狀反應g1→g2+k................................................................. 54 4.4 初析產物:肥粒體與k-碳化物 ................................................... 56 4.5 共析反應g→a+k+M23C6 .................................................... 60 第五章結論 參考文獻

1. D.A. Porter, K. Easterling and David A. Porter, “Phase Transformations in Metals and Alloys”, 3/e (2008).
2. C.J. Wang and Y.C. Chang, Mater. Chem. Phys., 76, 151 (2002).
3. A. Schneider, L. Falat, G. Sauthoff and G. Frommeyer, Intermetallics, 13, 1322 (2005).
4. W.C. Cheng and H.Y. Lin, Mater. Sci. Eng., A323, 462 (2002).
5. S.K. Chen, K.W. Chour, W.B. Lee, C.M. Wan and J.G. Byrne, Mater. Res. Bull., 25, 1115 (1990).
6. T.B. Massalski, “Binary Alloy Phase Diagrams”, 2/e, 1725.
7. 許中杰,“鐵-20錳-4鋁-0.5碳合金鋼之時效相變化研究”,國立台灣科技大學,碩士論文 (2008)。
8. 陳崧豪,“鐵-20錳-2鋁合金鋼之相變化研究”,國立台灣科技大學機械工程研究所,碩士論文 (2008)。
9. 薛凱云,“鐵-12錳-4鋁-0.5碳合金鋼之亞共析型反應研究”,國立台灣科技大學機械工程研究所,碩士論文 (2007)。
10. 黃祥銘,“鐵-13錳-3鋁-0.5碳合金鋼共析反應研究”,國立台灣科技大學機械工程研究所,碩士論文 (2010)。
11. 張育仁,“鐵-30錳-1.7鋁-1碳合金之時效相變化研究”,國立台灣科技大學機械工程研究所,碩士論文 (2009)。
12. 吳旻紘,“鐵-31錳-1.5鋁-0.6碳合金鋼之時效相變化研究”,國立台灣科技大學機械工程研究所,碩士論文 (2009)。
13. D.S. Zhou and G.J. Shiflet, Scripta Metall., 27, 1215 (1992).
14. C.R. Hutchinson and G.J. Shiflet, Scripta Mater., 50, 1 (2004).
15. Y.L. Lin and C.P. Chou, Scripta Metall., 27, 67 (1992).
16. H. Huang, D. Gan and P.W. Kao, Scripta Metall., 30, 499 (1994).
17. M.C. Li, H. Chang, P.W. Kao and D. Gan, Mater. Chem. Phys., 59, 96 (1999).
18. T.F. Liu and C.M. Wan, Scripta Metall., 19, 727 (1985).
19. T.F. Liu and J.C. Tasy, Scripta Metall., 21, 1213 (1987).
20. J.W. Lee, C.C. Wu and T.F. Liu, Scripta Mater., 50, 1389 (2004).
21. C.M. Liu, H.C. Cheng, C.Y. Chao and K.L. Ou, J. All. Comp., 488, 52 (2009).
22. T.F. Liu and C.C. Wu, Scripta Meatll., 23, 1087 (1989).
23. T.F. Liu and C.C. Wu, Scripta Metall., 23, 1243 (1989).
24. T.F. Liu and C.M. Wan, Scripta Metall., 19, 805 (1985).
25. W.C. Cheng, C.F. Liu and Y.F. Lai, Mater. Sci. Eng., A 337, 281 (2002).
26. K. Ishida, H. Ohtani, N. Satoh, R. Kainuma and T. Nishizawa, ISIJ International, 30(8), 680 (1990).
27. C.Y. Chao, L.K. Hwang and T.F. Liu, Scripta Meatll., 29, 647 (1993).
28. H. Huang, D. Gan and P.W. Kao, Scripta Meatll., 30, 499 (1994).
29. 宋元聖,“錳鋁鋼中形成-波來體的共析反應研究”, 國立台灣科技大學機械工程研究所,碩士論文 (2011)。
30. J. Janovec, M. Svoboba, A. Vyrostkova and A. Kroupa, Mater. Sci. Eng. A, 402, 288 (2005).
31. K.H. Kuo and C.L. Jia, Acta Metall., 33(6), 991 (1985).
32. P.R. Howell, J.V. Bee and R.W.K. Honeycombe, Metall. Trans., 10A, 1213 (1979).
33. W.F. Smith, “Structure and Properties of Engineering Alloys”, 2/e (1993).
34. C.R. Hutchinson, R.E. Hackenberg and G.J. Shiflet, Acta Mater., 52, 3565 (2004).
35. R.J. Dippenaar and R.W.K. Honeycombe, Proc. R. Soc. Lond., A, 333, 455 (1973).
36. D.N. Shackleton and P.M. Kelly, Acta Metall., 15, 979 (1967).
37. G.Spanos and H.I. Aaronson, Scripta Metall., 22, 1537 (1988).
38. R.E. Reed-Hill, “Physical Metallurgy Principle”, 3/e (1992).
39. M.H. Lewis and B.Hattersley, Acta Metall., 13, 1159 (1965).
40. J.B. Lupton, S. Murphy and J.H. Woodhead, Metall. Trans., 3(11), 2923 (1972).
41. P.H. Pumphrey and J.W. Edington, Acta Metall., 22, 89 (1974).
42. N. Terao and B. Sasmal, Metallography, 13, 117 (1980).
43. N. Terao and B. Sasmal, Trans. JIM, 22(6), 379 (1981).
44. K. Campbell and R.W.K. Honeycombe, Metal Sci., 8, 197 (1974).
45. M.C. Li, H. Chang and P.W. Kao, Mater. Chem. Phys., 5996 (1999).
46. K.H. Han, J.C. Yoon and W.K. Choo, Scripta Metall., 20, 33 (1986).
47. Y.G. Kim, Y.S. Park and J.K. Han, Metall. Trans. A, 16, 1689 (1985).
48. Y.G. Kim, J.K. Han and E.W. Lee, Metall. Trans. A, 17, 2097 (1986).
49. 黃振賢,“金屬熱處理”,文京出版社,第18版 (2000)。

QR CODE