簡易檢索 / 詳目顯示

研究生: 陳冠暐
Kuan-Hui Chen
論文名稱: 黏性減震房屋結構之阻尼係數最佳化分配
Optimal distribution of damping coefficient of viscous dampers to buildings
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 邱建國
Chien-kuo Chiu
林子剛
Tzu-Kang Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 322
中文關鍵詞: 黏性阻尼器黏性阻尼係數(常數)基因演算法減震結構被動控制。
外文關鍵詞: viscous damper, damping coefficient, genetic algorithm, seismic reduction structure, passive control.
相關次數: 點閱:263下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前國內外規範有關黏性阻尼器設計公式中,阻尼器所消散的能量雖與阻尼係數成正比,但該設計公式並無規定或暗示如何指定或分配係數值於各樓層。對於結構設計阻尼比固定之情況下,阻尼係數將有無窮多種分配組合。對於阻尼係數值的決定或黏性阻尼器的配置,許多研究中皆提出各種不同之分配理論與方法,其中分配於各樓層的阻尼係數不同,總阻尼係數也不相同,但目前尚無文獻對於阻尼器配置於整體結構之結構控制和經濟層面上達到最佳效益進行系統化之比較。因此本研究將使用基因演算法分析結構受地震擾動下之最佳化阻尼係數分配,並同時考量結構的控制性以及經濟性,以尋求最佳化之阻尼係數分配法。而此最佳化的結果將與以往各種分配理論方法比較,並以相同設計阻尼比為前提,設計三種不同形式的二維構架:規則型結構、具軟層結構及Setback Building,分別探討增設黏性阻尼器之減震結構的彈性與非彈性反應,驗證與比較各種分配方法之理論以及成效。經分析可知,各分配法對於彈性反應的抑制或非彈性反應的抑制與塑性轉角的折減都相當接近。推論如欲求取最佳化之樓層阻尼係數分配,固然可以使用本研究所提出之最佳化方法;倘若因實務需求,則本研究建議採用剪力應變能分配於有效樓層法具有較佳之減震效益、經濟價值與時間成本優點。


    Design formulas for viscous dampers are provided in the current design codes. However, using the code-specified design formulas, there exist an infinite number of selections for the distribution of damping coefficients of the dampers along the height of the building corresponding to a target added damping ratio. As a result, various distribution methods had been proposed in the past, but no systematic comparison for these methods has been made considering both the structural performance and damper cost. Therefore, in this study, a genetic algorithm is adopted to optimize the damping coefficient distribution, and the result is compared with the structures designed by existing damping coefficient distribution methods. However, it should be noted that all distribution methods are conducted with a constraint by which the added damping ratio is set to be the same. The elastic and inelastic seismic responses of three types of moment-resisting frames equipped with viscous dampers are then investigated. These three types of frames include a regular building frame, two vertically irregular frames with a soft story and a setback frame. Based on the criterion of identical added damping ratio, six different distribution methods are used to calculate the distributed damping coefficients along the height of the three frames. Numerical results from the proposed genetic algorithm will be compared with those calculated from the other distribution methods. The study has concluded that no significant difference was found in the seismic performance of the structures, although the proposed method can offer the optimized damping coefficient distribution. The distribution method based on the story shear strain energy to efficient stories is suggested to more appropriate than the other existing methods for practical design considering design simplicity.

    摘要 Abstract 致謝 目錄 表索引 圖索引 第一章 緒論 1.1 研究背景及目的 1.2 研究重點與內容 第二章 含黏性阻尼器減震結構之設計理論 2.1 前言 2.2 黏性阻尼器之介紹及力學性質 2.2.1 黏性阻尼器之介紹 2.2.2 黏性阻尼器之力學性質 2.3 含黏性阻尼器結構之等效阻尼比 2.3.1 結構系統中各桿件所貢獻之阻尼比 2.3.2 黏性阻尼器所提供之阻尼比 2.3.3 含黏性阻尼系統結構之有效阻尼比 2.3.4 含線性黏性阻尼器結構之有效阻尼比 2.3.5 含非線性黏性阻尼器結構之有效阻尼比 2.3.6 液態黏性阻尼器之設計 2.3.6.1 線性黏性阻尼器之阻尼係數設計公式 2.3.6.2 非線性黏性阻尼器之阻尼係數設計公式 第三章 黏性阻尼器阻尼係數之分配理論 3.1 前言 3.2 現存之分配理論 3.2.1 阻尼係數採平均分配之方法(Uniform Distribution, UD) 3.2.2 阻尼係數依樓層層剪力分配之方法(Story Shear Proportional Distribution (SSPD) 3.2.3 阻尼係數依樓層剪力應變能分配之方法(Distribution Based on Story Shear Strain Energy, SSSE) 3.2.4 阻尼係數依樓層剪力應變能分配於有效樓層之方法(Distribution Based on SSSE to Efficient Stories, SSSEES) 第四章 黏性阻尼器阻尼係數之最佳化搜尋 4.1 研究背景與構想 4.2 基因演算法(Genetic Algorithm) 4.2.1 基因演算法流程 4.2.2 資料結構(Data Structure) 4.2.3 編碼與解碼程序(Encoded and Decoded Process) 4.2.4 產生初始族群(Population) 4.2.5 適應函式(Fitness Function) 4.2.6 選擇與複製(Selection) 4.2.7 交配(Crossover) 4.2.8 突變(Mutation) 4.2.9 停止條件 4.3 建議之分配方法 4.3.1 阻尼係數使用基因演算法分配之方法 4.3.1.1 阻尼係數依基因演算法分配於全樓層(Distribution Based on Genetic algorithm, GA) 4.3.1.2 阻尼係數依基因演算法分配於部分樓層(Distribution Based on Genetic algorithm to Efficient Stories, GAES) 4.3.1.3 樓層調整指數制定 第五章 二維構架模型設計與分配理論之應用 5.1 PISA3D對黏性阻尼器之模擬與輸入地震資料之選用 5.2 基因演算法分析參數設定 5.3 二維實尺寸立面規則型十層樓結構 5.3.1 二維實尺寸立面規則型十層樓結構之黏性阻尼系統設計 5.3.2 二維實尺寸立面規則型十層樓結構之黏性阻尼器之阻尼係數依六種理論分配之比較與探討 5.4 二維實尺寸具兩層軟層之立面不規則型十層樓結構 5.4.1 具二層軟層之立面不規則型結構黏性阻尼系統設計 5.4.2 具二層軟層之立面不規則型結構之黏性阻尼器之阻尼係數依六種理論分配之比較與探討 5.5 具Setback building形式二維實尺寸立面不規則之十二樓層結構 5.5.1 具Setback building立面不規則形式十二樓層結構之黏性阻尼系統設計 5.5.2 具Setback building立面不規則形式十二樓層結構之黏性阻尼器之阻尼係數依六種理論分配之比較與探討 5.6 PISA3D對塑性鉸之模擬與非彈性結構行為分析輸入地震資料之選用 5.7 PISA3D分析非線性黏性阻尼器裝設於構架模型之結果 5.7.1 規則型結構 5.7.1.1 規則型結構之彈性反應分析 5.7.1.2 規則型結構之非彈性反應分析 5.7.1.3 規則型結構之彈性與非彈性結構反應分析結論 5.7.2 具軟層之立面不規則結構 5.7.2.1 具軟層之立面不規則結構之彈性反應分析 5.7.2.2 具軟層之立面不規則結構之非彈性反應分析 5.7.2.3 具軟層之立面不規則結構彈性與非彈性反應分析結論 5.7.3 具Setback形式之立面不規則結構 5.7.3.1 具Setback形式之立面不規則結構之彈性反應分析 5.7.3.2 具Setback形式之立面不規則結構之非彈性反應分析 5.7.3.3 具Setback形式之立面不規則結構之彈性與非彈性應分析結論 第六章 結論與建議 參考文獻 附表 附圖 附錄 A. 規則型結構耐震擬靜力設計 B. 具軟層之結構耐震擬靜力設計 C. Setback Building之結構耐震擬靜力設計 作者簡歷

    [1]建築物耐震規範及解說,內政部,2005年7月
    [2]FEMA, NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings, Reports No. 273 and 274, October, Washington, D.C. (1997)
    [3]FEMA, NEHRP Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Report No. 356, November, Washington, D.C. (2000)
    [4]FEMA, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Reports No.368, Washington, D.C. (2001)
    [5]FEMA, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Reports No.369, Washington, D.C. (2001)
    [6]Whittaker, A., Bertero, V. V., and Thompson, C., “Earthquake Simulator Testing of Steel Plate Added Damping and Stiffness Elements,” UCB/EERC-89/02, EERC, U.C. Berkeley. (1989)
    [7]蔡克銓,”三角形鋼板消能器之理論試驗與應用”,結構工程第八卷第四期,pp.3~19 (1993)。
    [8]陳正誠,「韌性同心斜撐構架與韌性斜撐構材之耐震行為與設計」,中華民國結構工程學會,結構工程,第15卷第1期,pp. 53-78 (2000)。
    [9]Aiken, I., Clark, P., Tajirian, F., Kimura, I., and Ko, E., “Unbonded Braces in the United States — Design Studies, Large-scale Testing and the First Building Application,” Symposium of Passive Control Structure – 2000, Tokyo Institute of Technology, pp.203~217. (2000)
    [10]Iwata, M., Kato, T., and Wada, A., “Buckling-Restrained Braces as Hysteretic Dampers.” Symposium of Passive Control Structures – 2000, Tokyo Institute of Technology, pp. 175~180. (2000)
    [11]Whittaker, Andrew and Constantinou, M.C., (2000), “Fluid Viscous Dampers for Building Construction,” First International Symposium on Passive Control, pp 133-142, Tokyo Institute of Technology, Tokyo.
    [12]Fu, Yaomin and Kasai, Kazuhiko (1998), “Comparative Study of Frames Using Viscoelastic and Viscous Dampers,” Journal of Structural Engineering, ASCE, Vol.124, No. 5, pp513-522.
    [13]Gluck, N., Reinhorn, A. M., Gluck, J., and Levy, R., “Design of Supplemental Dampers for Control of Structures,” Journal of Structural Engineering, ASCE, Vol.122, No. 12, pp. 1394-1399, 1996.
    [14]Takewaki, I., “Optimal Damper Placement for Minimum Transfer Functions,” Earthquake Engineering and Structural Dynamics, Vol. 26, No. 11, pp. 1113-1124, 1997.
    [15]Shukla, A. K. and Datta, T. K., “Optimal Use of Viscoelastic Dampers in Building Frames for Seismic Force,” Journal of Structural Engineering, ASCE, Vol.125, No. 4, pp. 401-409, 1999.
    [16]Diego López Garcia, “A Simple Method for the Design of Optimal Damper Configurations in MDOF Structures,” Earthquake Spectra, Vol. 17, No. 3, pp. 387-398, 2001.
    [17]Pekcan, G., Mander, J.B. and Chen, S.S. “Design and Retrofit Methodology for Building Structures with Supplemental Energy Dissipating Systems,” Technical Report MCEER-99-0021, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, 1999.
    [18]Hwang, J. S., Lin, W. C. and Wu, N. J., “Comparison of distribution methods for viscous damping coefficients to buildings,” Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance. (2010) , (DOI: 10.1080/15732479.2010.513713)
    [19]Mahendra, P. Singh and Luis, M. Moreschi. “Optimal placement of dampers for passive response control,” Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 955-976, 2002. (DOI: 10.1002/eqe.132)
    [20]G. F. Dargush. and R. S. Sant. “Evolutionary aseismic design and retrofit of structures with passive energy dissipation,” Earthquake Engineering and Structural Dynamics, Vol. 34, pp. 1601-1626, 2005.
    [21]Zhang RH, Soong TT. “Seismic design of viscoelastic dampers for structural applications. ” Journal of Structural Engineering 1992; 118(5):1375 –1392.
    [22]Shukla AK, Datta TK. “Optimal use of viscoelastic dampers in building frames for seismic response. ” Journal of Structural Engineering 1999; 125(4):401– 409.
    [23]Milman MH, Chu CC. Optimization methods for passive damper placement and tuning. Journal of Guidance, Control and Dynamics 1994; 17(4):848–856
    [24]Michalewicz, Z. and Fogel D. B., “How to Solve It: Modern Heuristics,” Springer-Verlag, Germany(2000)
    [25]Constantinou, M. C., and Symans, M. D., “Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers,” Report No. NCEER-92-0032, National Center for Earthquake Engineering Research, Buffalo, New York. (1992)
    [26]Soong, T. T., and Constantinou, M. C., “Passive and Active Structural Vibration Control in Civil Engineering,” Springer-Verlag, New York. (1994)
    [27]Raggett, J. D., “Estimating Damping of Real Structures,” Journal of the structural division, ASCE, Sept. (1975)
    [28]Chopra, A. K., Dynamics of Structures, Prentice-Hall, New Jersey. (1995)
    [29]黃震興、黃尹男,“使用線性黏性阻尼器建築結構之耐震試驗與分析”,國家地震工程研究中心報告NCREE-01-022 (2001)。
    [30]黃震興、黃尹男、洪雅惠,“含非線性黏性阻尼器結構之減震試驗與分析”,國家地震工程研究中心報告NCREE-02-020 (2002)。
    [31]Conor D. Johnson and David A. Kienholz, “Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers,” AIAA Journal, 1982
    [32]Seleemah, A. A., and Constantinou, M. C., “Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers,” Report No. MCEER-97-0004, National Center for Earthquake Engineering Research, Buffalo, New York. (1997)
    [33]Hwang, J. S., Huang, Y. N., Yi, S. L. and Ho, S. Y., “Design formulations for supplemental viscous dampers to building structures,” Journal of Structural Engineering, ASCE, 134(1), 22-31. (2008)
    [34]Wongprasert, N., and Symans, M. D. “Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building,” Journal of Engineering Mechanics, 130(4), 401-406. (2004)
    [35]Garcia, D. L., “A simple method for the design of optimal damper configurations in MDOF structures,” Earthquake Spectra, 17(3), 387-398. (2001)
    [36]Mathur, S. and Sajal, K. D., “Seismic response control of RC setback building with friction dampers,” Indian Concrete Journal, 77(11), 1469-1472. (2003)
    [37]Chintanapakdee, C. and Chopra, A. K., “Seismic response of vertically irregular frames: response history and modal pushover analyses,” Journal of Structural Engineering, ASCE, 130(8), 1177-1185. (2004)
    [38]Stefano, M. D. and Pintucchi, B., “A review of research on seismic behavior of irregular building structures since 2002,” Bulletin of Earthquake Engineering, 6(2), 285-308. (2008)
    [39]Johnson, C. D. and Kienholz, D. A., “Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers,” AIAA Journal. (1982)
    [40]E. Goldberg David, Genetic algorithms in search, optimization, and machine learning, Reading,Mass.:Addison-Wesley Pub.Co.,1989.
    [41]Gen, Mitsuo and Cheng, Runwei, Genetic algorithms and engineering design, New York: Wiley, 1997.
    [42]J. Grefenstette John, “Optimization of Control Parameters for Genetic Algorithms,” IEEE Transactions on System, Man. and Cybernetics, Vol.24, No.4, April 1994.
    [43]M.Srinivas and L.M.Patnaik, “Genetic Algorithms: A Survey,” IEEE Computer, June, pp.17-26, 1994.
    [44]方曉嵐,1998,「人工智慧技術-遺傳演算法」,技術與訓練,第二十三卷,第二期,第149-155頁。
    [45]Deb, K.. An efficient constraint handling method for genetic algorithms(2000).
    [46]Schmitt, L. M. Fundamental Study Theory of genetic algorithms(2001).
    [47]Mitra, K. and Gopinath, R. Multiobjective optimization of an industrial grinding operation using elitist nondominated sorting genetic algorithm(2004).
    [48]Kim Y-J, Ghaboussi J. Direct use of design criteria in genetic algorithm-based controller optimization. Earthquake Engineering and Structural Dynamics 2001; 30(9):1261–1278.
    [49]Lin T-K, Chu Y-L, Chang K-C, Chang C-Y Renovated controller designed by genetic algorithms. Earthquake Engineering and Structural Dynamics 2009; 38:457–475.
    [50]Lin BZ, Chuang MC, Tsai KC. (2009). Object-oriented development and application of a nonlinear structural analysis framework. Advances in Engineering Software. 40:66-82.
    [51]蔡克銓、莊明介, “結構分析程式物件導向使用者圖形介面之研發”,國家地震工程研究中心報告NCREE-05-012。
    [52]SAP2000 Analysis Reference Volume 1, Computers and Structures, Inc., Berkeley, California, (1996)
    [53]MATLAB. User’s Guide. The MathWorks, Inc.: Natick, MA, 2010.
    [54]蔡克銓、林柏州,“物件導向非線性靜動態三維結構分析程式之研發”,台灣大學碩士論文(1993)
    [55]蔡克銓、林柏州、莊明介、游宜哲、楊元森、許芳瑋、張慰慈“非線性靜動態三維結構分析與視覺化軟體”,國家地震工程研究中心報告NCREE-08-005。
    [56]陳正平,“鋼結構韌性鋼構架梁柱接頭「塑性轉角」之意義探討”,中華民國鋼結構協會鋼結構會刊,第18期,2004。

    QR CODE