簡易檢索 / 詳目顯示

研究生: 周彥甫
Yan-Fu Jhou
論文名稱: 以矽鍺為通道材料之穿隧型絕緣閘極雙極性電晶體之研究
Study of power TFET-IGBT with SiGe channel layer
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 王志良
張勝良
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 73
中文關鍵詞: 矽鍺通道元件穿隧型絕緣閘極雙極性電晶體溝渠式元件
外文關鍵詞: SiGe device, TFET-IGBT, UMOSFET
相關次數: 點閱:261下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要研究功率半導體元件,而理想的元件有低導通阻抗、高耐壓的特性;傳統的功率金屬氧化物半導體場效電晶體(power MOSFET)在高耐壓的時候有導通電阻過大的問題,因此不適合作為高耐壓元件,而另一種元件─絕緣閘極雙極性電晶體(IGBT)雖然解決導通電阻過大之問題,但因為元件本身有閘流體(thyristor)結構,容易造成閂鎖效應(latch-up),造成元件的不穩定,在此,解決方法是藉由穿隧型場效電晶體結構取代傳統結構以改善閂鎖效應(latch-up),為了使元件更趨近於理想,本論文提出以矽鍺作為通道材料之穿隧型場效應觸發之溝渠式絕緣閘極雙極性電晶體,因矽鍺的能隙較矽小,使得穿隧效應更加明顯,故可降低元件的導通電阻。此外,本論文也同時討論不同主動區寬度與閘極深度對元件的影響


The ideal characteristics of power device are low on-resistance and high blocking voltage. For a high blocking voltage, the conventional power MOSFET has an unacceptably high on-resistance. The problem of on-resistance is solved by the IGBT structure, but there are four alternative semiconductors in IGBT structure, which can procure latch-up phenomenon. It is found that the TFET structure can improve this condition. Because there are only three alternative semiconductors (p-n-p) in the TFET-IGBT structure, the device can alleviate latch-up. In order to improve the on-current of TFET-IGBT, the narrow bandgap material, SiGe, has been used as channel layer, which can cause a low on-state voltage drop without latch-up problem. In addition, devices with various active region width and trench depth will be discussed

Abstract (Chinese)...............................................i Abstract........................................................ii Contents.......................................................iii Figure captions.................................................iv Chapter 1 Introduction..........................................1 1-1 Power MOSFET................................................1 1-2 MOSFET-IGBT.................................................3 1-3 TFET structure..............................................5 1-4 SiGe channel layer..........................................8 1-5 Motivation..............................................10 1-6 Thesis organization.....................................11 Chapter 2 Device structure and Fabrication.....................12 2-1 Trench-gate power MOSFET...................................12 2-2 Trench-gate power MOSFET-IGBT..............................18 2-3 Trench-gate TFET...........................................23 2-4 Trench-gate TFET-IGBT......................................27 2-5 Trench-gate TFET with SiGe channel.........................31 2-6 Trench-gate TFET-IGBT with SiGe channel....................36 Chapter 3 Result and Discussion................................41 3-1 The electrical characteristics of power MOSFET and MOSFET-IGBT............................................................41 3-1-1 The electrical characteristics of power MOSFET...........42 3-1-2 The electrical characteristics of power MOSFET-IGBT......46 3-2 The electrical characteristics of conventional trench-gate TFET and TFET-IGBT..............................................52 3-2-1 The electrical characteristics of conventional trench-gate TFET............................................................52 3-2-2 The electrical characteristics of conventional trench-gate TFET-IGBT.......................................................56 3-3 The electrical characteristics of conventional trench-gate TFET with SiGe channel layer and TFET-IGBT with SiGe channel layer ................................................................61 3-3-1 The electrical characteristics of conventional trench-gate TFET with SiGe channel layer....................................62 3-3-2 The electrical characteristics of conventional trench-gate TFET-IGBT with SiGe channel layer...............................66 Chapter 4 Conclusion...........................................70 Reference.......................................................71

[1] D. Ueda, H. Takagi, and G. Kano, "A new vertical power MOSFET structure with extremely reduced on-resistance," IEEE transactions on electron device. vol. ED-32, no. 1, pp.2-6, Jan. 1985.
[2] Spuiber, O.; De Souza, M.M.; Narayanan, E.M.S.; Krishnan, S. "Analysis of a cool-MOSFET", proceedings of the international semiconductor conference, vol. 1, pp. 131-134, 1999.
[3] Y. Wang, H.F. Hu, C.H. Yu, H.Lan, "High-performance split-gate enhanced UMOSFET with p-pillar structure", IEEE transactions on electron device, vol. 60, no. 7, pp. 2302-2307, 2013.
[4] S.M. Sze, "Modern semiconductor device physics", Wiley, New York, Chapter 4, 1997.
[5] H.R Chang and B.J. Baliga, "500-V n-channel insulated gate bipolar transistor with a trench gate structure", IEEE transactions on electron device, Vol. ED-36, pp. 1824-1829, 1989.
[6] Jun Hu, M. Bobde, H. Yimaz, A. Bhalla, "Trench shielded planar gate IGBT(TSPG-IGBT)for low loss and robust short-circuit capability", Proc. ISPSD,pp. 25-28, 2013.
[7] J.I. Lee, J Choi, Y.S. Bae, M.Y Sung, "A novel trench IGBT with a rectangular oxide beneath the trench gate", ASQED, pp. 370-373, 2009.
[8] H. Nakano et al., "600V trench gate IGBT with micro-P structure", Proc.ISPSD, pp.132-135, 2009 .
[9] Sze, S.M. and NG, K.K. “Physics of semiconductor devices”, third edition, pp.328-332, 2007.
[10] W. Reddiek, G. Amaratunga, "Silicon surface tunnel transistor" Appl. Phys. lett., Vol. 61, no. 4, 24 July, 1995.
[11] Aswathy, M.; Biju, N.M.; Komaragiri, R. "Simulation studies of tunnel field effect transistor (TFET)", ICACCI, 2012.
[12] Seabaugh, A. "The tunneling transistor", IEEE spectrum, vol.50, no. 10, pp.35-62, 2013.
[13] C. R. Selvakumar, Member, IEEE, and Bruce Hecht, student member, IEEE, "SiGe-Channel n-MOSFET by germanium implantation", pp. 444-446, IEEE transactions on electron device, vol. 12, no. 8, AUGUST 1991.
[14] S.M. Sze, "Modern semiconductor device physics", Wiley, New York, Chapter 1, 1997.
[15] C. Le Royer, L. Hutin, S. Martinie, P. Nguyen, S. Barraud, F. Glowacki, S. Cristoloveanu, and M. Vinet, , "New features in planar SiGe channel tunnel FETs performance and operation".
[16] S. Richter, S. Blaeser, L. Knoll, S. Trellenkampl, A. Schafer, J. M. Hartmann, Q. T. Zhao, S. Mantl, "SiGe on SOI nanowire array TFETs with homo- and heterostructure tunnel junctions", IEEE, 2013.
[17] Y. Wang, H.F. Hu, W.L. Jiao, C. Cheng, “Gate enhanced power UMOSFET with ultralow on-resistance”, IEEE electron devices lett., vol. 31, no. 4, pp.338-340, 2010.
[18] W.Fischer, “Field induced tunnel diode”, IBM technical disclosure bulletin, 1973.
[19] Matsumoto, S.; Kim, I.J.; Sakai, T; Fukumitsu, T.;Yachi, T. “Switching characteristics of a thin film-SOI power MOSFET”, Japanese journal of applied physics, vol. 34, pp. 817-821, 1995.
[20] Technology modeling associates, Inc., MEDICI (two-dimensional device simulation program), Palo Alto, CA, USA, 2006.

QR CODE