簡易檢索 / 詳目顯示

研究生: 陳愛麗
Astrid Rahmawati
論文名稱: 從電子廢物中回收稀有金屬 (銦,釔,銪)
Recovery of Rare Metals (In, Y, and Eu) from E-wastes
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 劉志成
顧洋
蔡伸隆
王孟菊

李奇旺
陳嘉明
IDAA Warmadewanthi
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 167
中文關鍵詞: 陰極射線管( CRTs)電子廢棄物銦錫氧化物 (ITO)次臨界水萃取
外文關鍵詞: cathode ray tubes (CRTs), indium, indium tin oxide (ITO), subcritical water extraction (SWE)
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今,銦及其化合物有多種工業用途,而稀土金屬如釔(Y)和銪(Eu)則廣泛應用在電子產品中,此三種稀有金屬的需求量大,但供應量低,因此被視為是最關鍵的材料。隨著電子產品設計日新月異、其生命週期短縮,近年來電子廢棄物數量不斷持續增加。因此,有效地將銦及稀土金屬從電子廢棄物中回收與再利用極具經濟價值。本實驗研究目的為利用次臨界水萃取程序(SWE)回收廢棄銦錫氧化物 (ITO)中銦金屬,並比較不同有機酸及無機酸之萃取效果,結果顯示使用鹽酸進行萃取最能有效溶解ITO。從實驗中也證實銦離子在鹽酸水溶液中形成錯合物並能提升萃取效果。關於酸強度的影響,可得知萃取效果隨著濃度增加而提升,當鹽酸為0.75 M、溫度為150C時,在30分鐘內銦的萃取效果可達95.41% ,當萃取溫度控制在100oC時,銦的萃取效果亦可達94%,因此可得知當溫度控制在100oC至150C之間,SWE能有效萃取金屬。此外也利用置換反應分離滲濾液中的銦,在溫度為25C、平衡酸鹼值為0.74及反應時間為10分鐘下,利用5 g/L的鋁粉可置換出91.69%的銦。另一方面,我們也探討了利用SWE回收廢棄陰極射線管中螢光粉的稀土金屬釔與銪。並針對酸種類、酸濃度以及萃取溫度對其回收之影響進行研究。從實驗結果得知當溫度為150C時,使用1 M的依替膦酸,金屬釔與銪的萃取效率皆能大於97.34%。從SWE實驗結果顯示,經過次臨界流體萃取可有效的萃取銦及稀土金屬(釔和銪)。


Due to their wide applications, limited supply, and high demand, sustainable utilization of indium (In) and rare earth elements (REEs) of yttrium (Y) and europium (Eu) has become an important task. The development of their recovery technology from e-waste is therefore critical and essential. In this study, In extraction from waste indium tin oxide (ITO) was investigated using dilute acid solutions under subcritical condition. Among several types of acids, HCl yielded the highest extraction efficiency. The pronounced complex formation between In3+ and Cl- was proposed to be involved. The extraction efficiency of In increased with HCl concentration and reached 95.41 % within 30 min at 0.75 M of HCl and 150C. It was found that efficiency as high as 94% was found at 100C, implying that SWE was very effective in the range of 100-150C. Cementation reaction by Al powder was investigated to recover In from leaching solutions. The highest recovery of In was found from 0.75 M of HCl solutions and 91.69% of In was recovered at Al dose of 5 g/L and 25C within 10 min. When applied for Y and Eu extraction from waste cathode ray tubes (CRTs) phosphor, very high efficiency ( 97.34%) was achieved by using 1 M of etidronic acid at 150C. The present study demonstrates that SWE is an efficient, simple, and effective extraction technique for the extraction of In, Y, and Eu from e-waste.

ABSTRACT...………………………………………………………………………….i 摘要……….…………………………………………………………………………...ii ACKNOWLEDGEMENTS…………………………………………………………..iii TABLE OF CONTENTS……………………………………………………………...v NOMENCLATURES…………………………………………………………….....viii LIST OF FIGURES…………………………………………………………………..ix LIST OF TABLES…………………………………………………………………...xii CHAPTER 1 INTRODUCTION………………………………………………………1 1.1. Background……………………………………………………….........................1 1.2. Object of study………………………………………………………....................4 CHAPTER 2 LITERATURE REVIEW……………………………………………….1 2.1. Indium (In) and indium tin oxide (ITO) ………………………………………….1 2.1.1. Treatment techniques for In recovery…………………………………………..5 2.2. Yttrium (Y), europium (Eu), and cathode ray tube (CRT) phosphor……………17 2.2.1. Treatment techniques for Y and Eu recovery…………………………………19 2.3. Subcritical water extraction (SWE)……………………………………………...27 2.4. Cementation for In recovery……………………………………………………..31 CHAPTER 3 MATERIALS AND METHODS……………………………………….1 3.1. Materials…………………………………………………………………………..1 3.2. Instruments………………………………………………………………………..2 3.3. Methods…………………………………………………………………………...2 3.3.1. Pretreatment of e-waste …………………………………………………………2 3.3.2. Subcritical water extraction (SWE) …………………………………………….3 3.3.3. Conventional extraction………………………………………………………...5 3.3.3.1. Conventional extraction of In………………………………………….5 3.3.3.2. Conventional extraction of Y and Eu………………………………….5 3.3.4. Cementation…………………………………………………………………….6 3.3.5. Sample analysis…………………………………………………………………6 3.3.5.1. Aqua regia digestion……………………………………………………6 3.3.5.2. X-ray fluorescence (XRF) ……………………………………………..7 3.3.5.3. ICP-AES………………………………………………………………..8 3.3.5.4. FESEM-EDX…………………………………………………………...8 3.3.5.5. X-ray diffraction (XRD) ……………………………………………….8 3.3.6. Cyclic voltammetry…………………………………………………………....9 3.3.7. Potentiometric titration………………………………………………………...9 3.4. Simulation programs……………………………………………………………..11 3.4.1. Software for simulating chemical equilibrium (Hydra/Medusa)……………..11 3.4.2. Hyperquad2008 (Equilibrium constants from potentiometric data) ………....12 3.4.3. HySS2009 (Hyperquad simulation and speciation) ………………………….13 3.5. Experimental flowcharts…………………………………………………………14 CHAPTER 4 RESULTS AND DISCUSSION………………………………………..1 4.1. Waste indium tin oxide (ITO) ……………………………………………………1 4.1.1. Characterization of waste ITO………………………………………………….1 4.1.2. Subcritical water extraction (SWE) …………………………………………….4 4.1.2.1. Effect of acid type………………………………………………………5 4.1.2.1.1. Mineral acids………………………………………………………..5 4.1.2.1.2. Organic acids………………………………………………………11 4.1.2.2. Effect of acid concentration…………………………………………...19 4.1.2.2.1. Mineral acids………………………………………………………19 4.1.2.2.2. Organic acids………………………………………………………20 4.1.2.3. Effect of temperature…………………………………………………..23 4.1.2.3.1. Mineral acids……………………………………………………....23 4.1.2.3.2. Organic acids……………………………………………………....25 4.1.2.4. Effect of pressure………………………………………………………27 4.1.2.5. Comparison of extraction technologies………………………………..28 4.1.3. Cementation……………………………………………………………………31 4.1.3.1. Effect of different acidic solutions on In cementation………………...31 4.1.3.2. Effects of Al dosages and pH on the cementation reactions…………..36 4.1.3.3. Effect of reaction time…………………………………………………38 4.1.3.4. Morphology of cementation deposit…………………………………...39 4.2. Waste CRT phosphor……………………………………………………………41 4.2.1. Characterization of waste CRT phosphor……………………………………..41 4.2.2. Subcritical water extraction……………………………………………………47 4.2.2.1. Effect of acid type……………………………………………………..47 4.1.2.2. Effect of etidronic acid concentration…………………………………55 4.1.2.3. Effect of temperature…………………………………………………..57 4.2.3. Conventional extraction……………………………………………………….62 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS……………………..1 5.1. Conclusions……………………………………………………………………….1 5.1.1. Recovery of In from waste ITO………………………………………………...1 5.1.2. SWE of Y and Eu from waste CRT phosphor………………………………….2 5.2. Recommendations………………………………………………………………...2 REFERENCES………………………………………………………………………...1 APPENDIX A : EXPERIMENTAL DATA………...………………………………...1

Adhikari, B. B., Gurung, M., Kawakita, H., Ohto, K. (2012). Solid phase extraction, preconcentration and separation of indium with methylene crosslinked calix[4] and calix[6]arene carboxylic acid resins. Chemical Engineering Science, 78, 144 –154.
Akcil, A., Erust, C., Gahan, C. S., Ozgun, M., Sahin, M., Tuncuk, A. (2015). Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants - A review. Waste Management, 45, 258–271.
Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A. (1999). Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coordination Chemistry Reviews, 184(1), 311–318.
Alguacil, F. J., Lopez, F. A., Rodriguez, O., Martinez-Ramirez, S., Garcia-Diaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotoxicology and Environmental Safety, 130, 81–86.
Argenta, A. B., Reis, C. M., Mello, G. P., Dotto, G. L., Tanabe, E. H., Bertuol, D. A. (2017). Supercritical CO2 extraction of indium present in liquid crystal displays from discarded cell phones using organic acids. Journal of Supercritical Fluids, 120, 95–101.
Armstrong, D. A., Huie, R. E., Koppenol, W. H., Lymar, S.V., Merenyi, G., Neta, P., Ruscic, B., Stanbury, D. M., Steenken, S., Wardman, P. (2015). Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC Technical Report). Pure and Applied Chemistry, 87 (11–12), 1139–1150.
Assefi, M., Maroufi, S., Nekouei, R. K., Sahajwalla, V. (2018). Selective recovery of indium from scrap LCD panels using macroporous resins. Journal of Cleaner Production, 180, 814 – 822.
Balde, C. P., Forti, V., Gray, V., Kuehr, R., Stegmann, P. (2017). The Global E-waste Monitor 2017: Quantities, flows, and resources. United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn / Geneva / Vienna.
Binnemans, K., Jones, P.T., Blanpain, B., Gerven, T.V., Yang, Y., Walton, A., Buchert, M. (2013). Recycling of rare earths: a critical review. Journal of Cleaner Production, 51, 1-22.
Chen, M., Ma, L. Q. (2001). Comparison of Three Aqua Regia Digestion Methods for Twenty Florida Soils. Soil Science Society of America Journal, 65(2), 491.
Chen, W. S., Wang, Y. C., Chiu, K. L. (2017). The separation and recovery of indium, gallium, and zinc from spent GZO (IGZO) targets. Journal of Environmental Chemical Engineering, 5(1), 381–390.
Chou, W. L., Yang, K. C. (2008). Effect of various chelating agents on supercritical carbon dioxide extraction of indium(III) ions from acidic aqueous solution. Journal of Hazardous Materials, 154(1–3), 498–505.
DeMichelis, I., Ferella, F., Varelli, E. F., Vegliò, F. (2011). Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses. Waste Management, 31(12), 2559–2568.
Demirkran, N., Künkül, A. (2011). Recovering of copper with metallic aluminum. Transactions of Nonferrous Metals Society of China (English Edition), 21(12), 2778–2782.
Dodbiba, G., Nagai, H., Wang, L. P., Okaya, K., Fujita, T. (2012). Leaching of indium from obsolete liquid crystal displays: Comparing grinding with electrical disintegration in context of LCA. Waste Management, 32(10), 1937–1944.
Dupont, D., Binnemans, K. (2015). Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste. Green Chemistry, 17(2), 856–868.
European Commission. (2014). Report on the critical raw materials for EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials. Available at: http://ec.europa.eu/growth/sectors/rawmaterials/specificinterest/critical_en (page accessed on June 5, 2018).
European Commission. (2017). Study on the review of the list of critical raw materials: Executive summary. Available at: http://ec.europa.eu/growth/sectors/rawmaterials/specificinterest/critical_en (page accessed on June 5, 2018).
Fazary, A. E., Bani-fwaz, M. Z., Fawy, K. F., Sahlabji, T., Awwad, N. S. (2018). Norleucine metal complexes : comments on their equilibrium constants data.  Reviews in Inorganic Chemistry, 2018.
Ferella, F., Belardi, G., Marsilii, A., DeMichelis, I., Vegliò, F. (2017). Separation and recovery of glass, plastic and indium from spent LCD panels. Waste Management, 60, 569–581.
Fontana, D., Forte, F., DeCarolis, R., Grosso, M. (2015). Materials recovery from waste liquid crystal displays: A focus on indium. Waste Management, 45, 325–333.
Fröhlich, P., Lorenz, T., Martin, G., Brett, B., Bertau, M. (2017). Valuable Metals-Recovery Processes, Current Trends, and Recycling Strategies. Angewandte Chemie - International Edition, 56(10), 2544–2580.
Gans, P., Sabatini, A., Vacca, A. (1996). Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta, 43(10), 1739–1753.
Grieken, R.V., Markowicz, A. (2001). Handbook of X-Ray Spectrometry, Volume 26: Second Edition Revised and Expanded. New York, Marcel Dekker, Inc.
Grimes, S. M., Yasri, N. G., Chaudhary, A. J. (2017). Recovery of critical metals from dilute leach solutions – Separation of indium from tin and lead. Inorganica Chimica Acta, 461, 161–166.
Gu, S., Fu, B., Dodbiba, G., Fujita, T., Fang, B. (2017). A sustainable approach to separate and recover indium and tin from spent indium-tin oxide targets. RSC Advances, 7(82), 52017–52023.
Guan, J., Wang, S., Ren, H., Guo, Y., Yuan, H., Yan, X., Guo, J., Gu, W., Su, R., Liang, B., Gao, G., Zhou, Y., Xu, J, Guo, Z. (2015). Indium recovery from waste liquid crystal displays by polyvinyl chloride waste. RSC Advances, 5(124), 102836 –102843.
Gustafsson, A. M. K., Björefors, F., Steenari, B.-M., Ekberg, C. (2015). Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials. The Scientific World Journal, 2015, 494015.
Habashi, F., 1999. A textbook of hydrometallurgy. Metallurgie Extractive Quebec.
He, Y., Ma, E., Xu, Z. (2014). Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction. Journal of Hazardous Materials, 268, 185–190.
He, Y., Xu, Z. (2014). The status and development of treatment techniques of typical waste electrical and electronic equipment in China: a review. Waste Management & Research, 32 (4), 254-269.
Hibbert, B. (1993). Introduction to electrochemistry, London: The Macmillan Press Ltd.
Higashi, A., Saitoh, N., Ogi, T., Konishi, Y. (2011). Recovery of indium by biosorption and its application to recycling of waste liquid crystal display panel. Journal of the Japan Institute of Metals, 75(11), 620 – 625.
Hsieh, S. J., Chen, C. C., Say, W. C. (2009). Process for recovery of indium from ITO scraps and metallurgic microstructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 158(1–3), 82–87.
Hu, A. H., Kuo, C. H., Huang, L. H., Su, C. C. (2017). Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor. Waste Management, 60, 765–774.
Hu, Y., Zhang, P., Li, J., Chen, D. (2015). Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process. Journal of Hazardous Materials, 299, 149–157.
Ihsanullah, Al-Khaldi, F. A., Abu-Sharkh, B., Abulkibash, A. M., Qureshi, M. I., Laoui, T., Atieh, M. A. (2016). Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment, 57(16), 7232–7244.
Innocenzi, V., DeMichelis, I., Ferella, F., Beolchini, F., Kopacek, B., Vegliò, F. (2013a). Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation. Waste Management, 33(11), 2364–2371.
Innocenzi, V., DeMichelis, I., Ferella, F., Vegliò, F. (2013b). Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: Experimental results and economic simulation. Waste Management, 33(11), 2390–2396.
Innocenzi, V., DeMichelis, I., Ferella, F., Vegliò, F. (2017). Leaching of yttrium from cathode ray tube fluorescent powder: Kinetic study and empirical models. International Journal of Mineral Processing, 168, 76–86.
Innocenzi, V., DeMichelis, I., Kopacek, B., Vegliò, F. (2014). Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes. Waste Management, 34(7), 1237–1250.
Islam, M. N., Jung, H. Y., Park, J. H. (2015). Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals. Journal of Environmental Management, 163, 262–269.
Islam, M. N., Park, J. H., Shin, M. S., Park, H. S. (2014). Decontamination of PCBs-containing soil using subcritical water extraction process. Chemosphere, 109, 28–33.
Ivanova V.Y., Chevela, V.V., Bezryadin, S. G. (2015). Complex formation of indium (III) with citric acid in aqueous solution. Russian Chemical Bulletin, 64, 1842 – 1849.
Jenkins, R. (1999). X-ray Fluorescence Spectrometry. Second edition, John Wiley & Sons, Inc.
Jha, M. K., Kumari, A., Panda, R., Rajesh Kumar, J., Yoo, K., Lee, J. Y. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 165, 2–26.
Jiang, J., Liang, D., Zhong, Q. (2011). Precipitation of indium using sodium tripolyphosphate. Hydrometallurgy, 106(3–4), 165–169.
Jowkar, M. J., Bahaloo-Horeh, N., Mousavi, S. M., Pourhossein, F. (2018). Bioleaching of indium from discarded liquid crystal displays. Journal of Cleaner Production, 180, 417–429.
Kaifer, A., Gomez-Kaifer, M. (1999). Supramolecular electrochemistry, Weinheim: Wiley-VCH.
Karavasteva, M. (2015). The effect of magnesium and zinc on indium cementation kinetics and deposit morphology in the presence of and without nonylphenylpolyethylene glycol. Hydrometallurgy, 150, 47–51. 7
Kirmizakis, P., Tsamoutsoglou, C., Kayan, B., &Kalderis, D. (2014). Subcritical water treatment of landfill leachate: Application of response surface methodology. Journal of Environmental Management, 146, 9–15.
Ku, Y., Wu, M. H., Shen, Y. S. (2007). A study on the cadmium removal from aqueous solutions by zinc cementation. Separation Science and Technology, 37(3), 571–590.
Kubicek, V., Kotek, J., Hermann, P., and Lukes, I. (2007). Aminoalkylbis(phosphonates): Their Complexation Properties in Solution and in the Solid State, Eur. Journal of Inorganic Chemistry, 2007, 333-344.
Kubota, F., Koyanagi, Y., Nakashima, K., Shimojo, K., Kamiya, N., Goto, M. (2008). Extraction of lanthanide ions with an organophosphorous extractant into ionic liquids. Solvent Extraction Research and Development, 15, 81-87.
Kuncoro, K. A. (2016). Recovery of In from waste ITO. Master’s Thesis of National Taiwan University of Science and Technology, Taipei, Taiwan.
Kulkarni, A. K., Daneshvarhosseini, S., Yoshida, H. (2011). Effective recovery of pure aluminum from waste composite laminates by sub- and super-critical water. Journal of Supercritical Fluids, 55(3), 992–997.
Laintz, K. E., Wai, C. M., Yonker, C. R., Smith, R. D. (1992). Extraction of Metal Ions from Liquid and Solid Materials by Supercritical Carbon Dioxide. Analytical Chemistry, 64(22), 2875–2878.
Lairaksa, N., Moon, A. R., Makul, N. (2013). Utilization of cathode ray tube waste: Encapsulation of PbO-containing funnel glass in Portland cement clinker. Journal of Environmental Management, 117, 180–186.
Lee, C. H., Jeong, M. K., Fatih Kilicaslan, M., Lee, J. H., Hong, H. S., Hong, S. J. (2013). Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM. Waste Management, 33(3), 730–734.
Lee, S. K., &Lee, U. H. (2016). Adsorption and desorption property of iminodiacetate resin (Lewatit®TP207) for indium recovery. Journal of Industrial and Engineering Chemistry, 40, 23–25.
Lee, S., Kim, G. H., Ryu, S.-S., Hong, H. S. (2014). Recovery of indium powders from indium chloride solutions by cementation a. Canadian Metallurgical Quarterly, 53(2), 232–239.
Levenspiel, O. (1999). Chemical Reaction Engineering, 3rd ed., New York: John Wiley & Sons.
Li, R.D, Yuan, T. C., Fan, W. B., Qiu, Z. L., Su, W. J., Zhong, N. Q. (2014). Recovery of indium by acid leaching waste ITO target based on neural network. Transactions of Nonferrous Metals Society of China, 24(1), 257–262.
Li, X. H., Zhang, Y. J., Qin, Q. L., Yang, J., Wei, Y. S. (2010). Indium recovery from zinc oxide flue dust by oxidative pressure leaching. Transactions of Nonferrous Metals Society of China, 20, 141–145.
Li, Y., Liu, Z., Li, Q., Liu, Z., Zeng, L. (2011). Recovery of indium from used indium-tin oxide (ITO) targets. Hydrometallurgy, 105(3–4), 207–212.
Liang, Y., Liu, Y., Lin, R., Guo, D., Liao, C. (2016). Leaching of rare earth elements from waste lamp phosphor mixtures by reduced alkali fusion followed by acid leaching. Hydrometallurgy, 163, 99–103.
Lin, E. Y. (2016). Recovery of Yttrium and Europium from Waste CRT Phosphor by Subcritical Water Extraction. Master’s Thesis of National Taiwan University of Science and Technology, Taipei, Taiwan.
Lin, E. Y., Rahmawati, A., Ko, J. H., Liu, J. C. (2018). Extraction of yttrium and europium from waste cathode-ray tube (CRT) phosphor by subcritical water. Separation and Purification Technology, 192, 166–175.
Lin, T. I., Lee, Y. H., Chen, Y. C. (1993). Capillary electrophoretic analysis of inorganic cations. Role of complexing agent and buffer pH. Journal of Chromatography A, 654 (1), 167–176.
Liu, H. M., Wu, C. C., Lin, Y. H., Chiang, C. K. (2009). Recovery of indium from etching wastewater using supercritical carbon dioxide extraction. Journal of Hazardous Materials, 172(2–3), 744–748.
Liu, H., Zhang, S., Pan, D., Tian, J., Yang, M., Wu, M., Volinsky, A. A. (2014). Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution. Journal of Hazardous Materials, 272, 96–101.
Luong, H. V. T., Liu, J. C. (2014). Flotation separation of gallium from aqueous solution – Effects of chemical speciation and solubility. Separation and Purification Technology, 132, 115-119.
Ma, E., Xu, Z. (2013). Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels. Journal of Hazardous Materials, 263, 610–617.
Madakkaruppan, V., Pius, A., Sreenivas, T., Giri, N., Sarbajna, C. (2016). Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid. Journal of Hazardous Materials, 313, 9–17.
Martin, M., Janneck, E., Kermer, R., Patzig, A., Reichel, S. (2015). Recovery of indium from sphalerite ore and flotation tailings by bioleaching and subsequent precipitation processes. Minerals Engineering, 75, 94–99.
Massari, S., Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43.
Miskufova, A., Kochmanova, A., Havlik, T., Horvathova, H., Kuruc, P. (2018). Leaching of yttrium, europium and accompanying elements from phosphor coatings. Hydrometallurgy, 176, 216–228.
Möller, M., Nilges, P., Harnisch, F., Schröder, U. (2011). Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation. ACS Sustainable Chemistry & Engineering, 4, 566–579.
Oh, S. Y., Yoon, M. K., Kim, I. H., Kim, J. Y., Bae, W. (2011). Chemical extraction of arsenic from contaminated soil under subcritical conditions. Science of the Total Environment, 409(16), 3066–3072.
Ong, L. K., Tran Nguyen, P. L., Soetaredjo, F. E., Ismadji, S., Ju, Y. H. (2016). Direct reuse of Cu-laden wastewater for non-edible oil hydrolysis: Basic mechanism of metal extraction and fatty acid production. RSC Advances, 6(30), 25359–25367.
Park, J. (2008). The Removal of Tin from ITO-scrap Using Molten NaOH, Bulletin of the Korean Chemical Society, 29(1), 255–256.
Park, J. C. (2011). The recovery of indium metal from ITO-scrap using hydrothermal reaction in alkaline solution. Bulletin of the Korean Chemical Society, 32(10), 3796–3798.
Park, K. S., Sato, W., Grause, G., Kameda, T., Yoshioka, T. (2009). Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride. Thermochimica Acta, 493(1–2), 105–108.
Plaza, M., Turner, C. (2015). Trends in Analytical Chemistry Pressurized hot water extraction of bioactives. Trends in Analytical Chemistry, 71, 39–54.
Pradhan, D., Panda, S., Sukla, L. B. (2017). Recent advances in indium metallurgy: A review. Mineral Processing and Extractive Metallurgy Review, 39(3), 167–180.
Prescott, F. J., Shaw, J. K.,Billelo, J. P., Cragwall, G. O. (1953). Gluconic Acid and Its Derivatives. Industrial & Engineering Chemistry, 45(2), 338-342.
Purnomo, A., Yudiantoro, Y. A. W., Putro, J. N., Nugraha, A. T., Irawaty, W., Ismadji, S. (2016). Subcritical water hydrolysis of durian seeds waste for bioethanol production. International Journal of Industrial Chemistry, 7(1), 29–37.
Rabah, M. A. (2008). Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps. Waste Management, 28(2), 318–325.
Resende, L.V., Morais, C. A. (2010). Study of the recovery of rare earth elements from computer monitor scraps - Leaching experiments. Minerals Engineering, 23(3), 277–280.
Richter, B. E., Jones, B. A., Ezzell, J. L., Porter, N. L., Avdalovic, N., Pohl, C. (1996). Accelerated Solvent Extraction: A Technique for Sample Preparation. Analytical Chemistry, 68(6), 1033–1039.
Rocchetti, L. (2015). Innovative method to extract indium from LCD panels. Chemical Engineering Transactions, 43, 1987–1992.
Rocchetti, L., Amato, A., Beolchini, F. (2016). Recovery of indium from liquid crystal displays. Journal of Cleaner Production, 116, 299–305.
Santoso, S. P., Angkawijaya, A. E., Ismadji, S., Ayucitra, A., Soetaredjo, F. E., Lan, T. N. P., Ju, Y. H. (2016). Complex Formation Study of Binary and Ternary Complexes Including 2,3-Dihydroxybenzoic Acid, N-acetylcysteine and Divalent Metal Ions. Journal of Solution Chemistry, 45(4), 518–533.
Santoso, S. P., Chandra, I. K., Soetaredjo, F. E., Angkawijaya, A. E., Ju, Y.-H. (2014). Equilibrium Studies of Complexes between N -Acetylcysteine and Divalent Metal Ions in Aqueous Solutions. Journal of Chemical & Engineering Data, 59(5), 1661–1666.
Savvilotidou, V., Hahladakis, J. N., Gidarakos, E. (2015). Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs. Waste Management, 45, 314–324.
Schaeffer, N., Feng, X., Grimes, S., Cheeseman, C. (2017). Recovery of an yttrium europium oxide phosphor fromwaste fluorescent tubes using a Brønsted acidic ionic liquid, 1-methylimidazolium hydrogen sulfate. Journal of Chemical Technology & Biotechnology, 92, 2731 – 2738.
Shi, W., Liu, C., Ding, D., Lei, Z., Yang, Y., Feng, C., Zhang, Z. (2013). Immobilization of heavy metals in sewage sludge by using subcritical water technology. Bioresource Technology, 137, 18–24.
Silveira, A. V. M., Fuchs, M. S., Pinheiro, D. K., Tanabe, E. H., Bertuol, D. A. (2015). Recovery of indium from LCD screens of discarded cell phones. Waste Management, 45, 334–342.
Singh, N., Li, J., Zeng, X. (2016). Global responses for recycling waste CRTs in e-waste. Waste Management, 57, 187–197.
Smith, R.M., Martell, A.E. (1976). Critical stability constants, Volume 4: Inorganic Complexes. New York: Springer.
Song, G., Yuan, W., Zhu, X., Wang, X., Zhang, C., Li, J., Bai, J., Wang, J. (2017). Improvement in rare earth element recovery from waste trichromatic phosphors by mechanical activation. Journal of Cleaner Production, 151, 361–370.
Souada, M., Louage, C., Doisy, J. Y., Meunier, L., Benderrag, A., Ouddane, B., Bellayer, S., Nuns, N., Traisnel, M., Maschke, U. (2018). Extraction of indium-tin oxide from end-of-life LCD panels using ultrasound assisted acid leaching. Ultrasonics Sonochemistry, 40, 929–936.
Swain, B., Mishra, C., Hong, H. S., Cho, S. S. (2016). Beneficiation and recovery of indium from liquid-crystal-display glass by hydrometallurgy. Waste Management, 57, 207–214.
Sykes, J. P., Wright, J. P., Trench, A. (2016). Discovery, supply and demand: From Metals of Antiquity to critical metals. Transactions of the Institutions of Mining and Metallurgy, Section B: Applied Earth Science, 125(1), 3–20.
Tavakoli, O., Yoshida, H. (2005). Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments. Environmental Science and Technology, 39(7), 2357–2363.
Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., Ong, E. S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217(16), 2484–2494.
Tian, L., Liu, Y., Zhang, T. A., Lv, G. Z., Zhou, S., Zhang, G. Q. (2017). Kinetics of indium dissolution from marmatite with high indium content in pressure acid leaching. Rare Metals, 36(1), 69–76.
Tian, X., Yin, X., Gong, Y., Wu, Y., Tan, Z., Xu, P. (2016). Characterization, recovery potentiality, and evaluation on recycling major metals from waste cathode-ray tube phosphor powder by using sulphuric acid leaching. Journal of Cleaner Production, 135, 1210 – 1217.
Tunsu, C., Ekberg, C., Foreman, M., Retegan, T. (2014). Studies on the Solvent Extraction of Rare Earth Metals from Fluorescent Lamp Waste Using Cyanex 923. Solvent Extraction and Ion Exchange, 32(6), 650–668.
Tunsu, C., Petranikova, M., Ekberg, C., Retegan, T. (2016). A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions. Separation and Purification Technology, 161, 172–186.
Tunsu, C., Petranikova, M., Gergorić, M., Ekberg, C., Retegan, T. (2015). Reclaiming rare earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy, 156, 239–258.
Wang, H., Gu, Y., Wu, Y., Zhang, Y. N., Wang, W. (2015). An evaluation of the potential yield of indium recycled from end-of-life LCDs: A case study in China. Waste Management, 46, 480–487.
Wu, S., Wang, L., Zhang, P., El-Shall, H., Moudgil, B., Huang, X., Zhao, L., Zhang, L., Feng, Z. (2018). Simultaneous recovery of rare earths and uranium from wet process phosphoric acid using solvent extraction with D2EHPA. Hydrometallurgy, 175, 109–116.
U.S. Department of Energy. (2010). Critical Materials Strategy 2010. US. Avaiable at: https://www.energy.gov/policy/downloads/2010-critical-materials-strategy (page accessed on June 10, 2018).
U.S. Department of Energy. (2011). Critical Materials Strategy 2011. US. Available at: https://www.energy.gov/policy/downloads/2011-critical-materials-strategy (page accessed on June 10, 2018).
U.S. Geological Survey. (2017). Mineral Commodity Summaries 2017: indium, Reston, Virginia, US.
U.S. Geological Survey. (2018). Mineral Commodity Summaries 2018: indium, Reston, Virginia, US.
U.S. Geological Survey. (2018). Mineral Commodity Summaries 2018: REE, Reston, Virginia, US.
Weast, R.C. (1971). CRC Handbook of chemistry and physics. 52nd ed. United States: The Chemical Rubber Co.
Wei, S., Liu, J., Zhang, S., Chen, X., Liu, Q., Zhu, L., Guo, L., Liu, X. (2016). Stoichiometry, isotherms and kinetics of adsorption of In(III) on Cyanex 923 impregnated HZ830 resin from hydrochloric acid solutions. Hydrometallurgy, 164, 219–227.
Weiser, A., Lang, D. J., Schomerus, T., Stamp, A. (2015). Understanding the modes of use and availability of critical metals - An expert-based scenario analysis for the case of indium. Journal of Cleaner Production, 94, 376–393.
Werner, T. T., Mudd, G. M., Jowitt, S. M. (2015). Indium: key issues in assessing mineral resources and long-term supply from recycling. Applied Earth Science, 124(4), 213–226.
Wolterink, A. F. W. M., Jonker, A. B., Kengen, S. W. M., Stams, A. J. M. (2002). Pseudomonas chloritidismutans sp. nov., a nondenitrifying, chlorate-reducing bacterium. International Journal of Systematic and Evolutionary Microbiology, 52, 2183-2190.
Wu, L. K., Li, Y. Y., Cao, H. Z., Zheng, G. Q. (2015). Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol. Journal of Hazardous Materials, 299, 520–528.
Wu, Y., Yin, X., Zhang, Q., Wang, W., Mu, X. (2014). The recycling of rare earths from waste tricolor phosphors in fluorescent lamps: A review of processes and technologies. Resources, Conservation and Recycling, 88(100), 21–31.
Xu, Q., Li, G., He, W., Huang, J., Shi, X. (2012). Cathode ray tube (CRT) recycling: Current capabilities in China and research progress. Waste Management, 32(8), 1566–1574.
Yabalak, E., Gizir, A. M. (2013). Subcritical and supercritical fluid extraction of heavy metals, Journal of the Serbian Chemical Society, 78(7), 1013–1022.
Yang, F., Kubota, F., Baba, Y., Kamiya, N., Goto, M. (2013). Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Journal of Hazardous Materials, 254 –255(1), 79–88.
Yang, J., Retegan, T., Ekberg, C. (2013). Indium recovery from discarded LCD panel glass by solvent extraction. Hydrometallurgy, 137, 68–77.
Yin, X., Wu, Y., Tian, X., Yu, J., Zhang, Y. N., Zuo, T. (2016). Green Recovery of Rare Earths from Waste Cathode Ray Tube Phosphors: Oxidative Leaching and Kinetic Aspects. ACS Sustainable Chemistry and Engineering, 4(12), 7080–7089.
Yoon, H.-S., Kim, C.-J., Chung, K., Lee, J.-Y., Shun,M.-S., Lee, S.-J., Joe, A.R., Lee, S.-I., Yoo, S.-J. (2014). Leaching kinetics of neodymium in sulfuric acid of rare earth elements (REE) slag concentrated by pyrometallurgy from magnetite ore. Korean Journal of Chemical Engineering. 31, 1766–1772.
Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y. (2015). Recovery of indium from TFT and CF glasses of LCD wastes using NaOH-enhanced sub-critical water. The Journal of Supercritical Fluids, 104, 40–48.
Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y., Kakimori, N., Asghari Feridoun, S. (2014). Recovery of indium from TFT and CF glasses in LCD panel wastes using sub-critical water. Solar Energy Materials and Solar Cells, 125, 14–19.
Yu, G., Tian, X. miao, Wu, Y., Zhe, T., Lei, Lv. (2016). Recent development of recycling lead from scrap CRTs: A technological review. Waste Management, 57, 176–186.
Zhang, F., Wei, C., Deng, Z., Li, X., Li, C., Li, M. (2016). Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant. Hydrometallurgy, 161, 102–106.
Zhang, K., Wu, Y., Wang, W., Li, B., Zhang, Y., Zuo, T. (2015). Recycling indium from waste LCDs: A review. Resources, Conservation and Recycling, 104 (100), 276–290.
Zhang, L., Xu, Z. (2016). A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production, 127, 19–36.
Zhang, S. G., Yang, M., Liu, H., Pan, D. A., Tian, J. J. (2013). Recovery of waste rare earth fluorescent powders by two steps acid leaching. Rare Metals, 32(6), 609–615.
Zhang, Y., Jin, B., Ma, B., Feng, X. (2017). Separation of indium from lead smelting hazardous dust via leaching and solvent extraction. Journal of Environmental Chemical Engineering, 5(3), 2182–2188.

無法下載圖示 全文公開日期 2023/08/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE