簡易檢索 / 詳目顯示

研究生: 王衍甯
Yan-Ning Wang
論文名稱: 分岔型微流道之設計因子探討
A Study of The Dominant Factors in Designing a Bifurcation Microchannel
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 鄧昭瑞
Geo-Ry Tang
孫珍理
Chen-li Sun
林彥亨
Yen-Heng Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 161
中文關鍵詞: 分岔型微流道均勻分佈
外文關鍵詞: Microchannel, Uniform Reagent Distribution
相關次數: 點閱:270下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的為開發一Y字型分岔微流道,使其能快速均勻的分佈檢體及減少檢體損失,未來可應用於高通量晶片中之均勻濃度分佈,或是和微量注射器結合成為實驗室中檢體分佈之微型工具。
檢體分流的均勻度和流道幾何設計息息相關,因此在研究過程中,透過數值模擬分析,觀察在不同幾何設計中檢體內部壓力的分佈及變化,進而找出優化的流道幾何尺寸,作為實驗的晶片物理尺寸。判斷分岔微流道幾何尺寸優劣的定義在於檢體於分流過程中的最大與最小壓力差,當此壓力差較小時,代表檢體通過此分岔微流道時的速度場較均勻,較能達到均勻的分佈且減少檢體於分流過程中損失。經過多次的模擬分析,將代號[Y-R2.0H0.5]的分岔微流道物理尺寸利用微铣削機及熱黏合加工完成,作為實驗的晶片,以驗證模擬的結果。
經過五十次的實驗及分析,得到檢體在此[Y-R2.0H0.5]的晶片上可達到2.13%的均勻度,而檢體損失率為5%。此結果與之前發展的T字型分岔微流道相比,在均勻度上提升了1.7%,而檢體損失率降低了3%。為了提高本實驗結果之可信度,我們利用單因子變異數分析實驗數據,得到了90%的信心程度,證明本研究發展的Y字型分岔微流道效果比T字型分岔微流道優良。


A Y-bifurcation microchannel used for uniform reagent distribution and minimized reagent loss was developed in this study, which can be integrated with a high throughput system and precisely distribute the reagent concentration. Numerical simulations were used to estimate the geometry-dependent pressure distribution inside the reagent plug during the fission process, and the results were taken as a reference when modifying the design of this Y-bifurcation microchannel. To optimize the performance, four different geometries of the Y-bifurcation microchannels were designed and tested, and a Y-bifurcation microchannel with a 2 mm radius round corner and a 0.5 mm height separator was found to exhibit smallest pressure difference inside the split reagent plug and used for subsequent experiments. The optimized Y-bifurcation microchannel was manufactured on the PMMA substrates with a micromilling machine and hot embossing technique. Fifty experiments were realized on this Y-bifurcation microchannel: the results demonstrated that the average reagent distribution uniformity is 2.13% with a STD of 3.94% and the average residual reagent volume is 95% with a STD of 4.3%. One-way ANOVA was applied to further confirm that this Y-bifurcation microchannel can achieve better performance than the previous T-bifurcation microchannel with a 90% confidence level.

摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XIX 符號表 XX 第一章 導論 1 1.1 研究背景 1 1.2分岔型微流道設計及應用之文獻回顧 6 1.3研究動機與目的 11 1.4研究方法 12 第二章 數值模擬分析之邊界條件 15 2.1數值模擬分析之基本假設 15 2.2統御方程式與邊界條件 17 2.2.1統御方程式 17 2.2.2邊界條件 19 2.3分析方法 24 第三章 數值模擬分析之結果與討論 27 3.1網格測試 27 3.2 Y字型微流道之壓力分佈 30 3.3圓角幾何設計與檢體內部壓力值之關係 34 3.4分流結構高度與壓力之關係 39 3.5分流結構幾何設計之綜合比較 43 3.6數值模擬分析總結 48 第四章 生醫晶片製程 53 4.1微铣削 53 4.1.1前言 53 4.1.2微铣削之操作使用方法 56 4.2 晶片設計與製造 59 4.2.1 T字型微流體晶片 [T-R0.5H0.5] 59 4.2.2 Y字型微流體晶片 [Y-R0.5H0.5] 64 4.2.3 Y字型微流體晶片 [Y-R2.0H0.5] 68 4.2.4 封閉微流體道之蓋子端設計與製程 72 4.3 熱黏合 75 4.3.1 前言 75 4.3.2夾持力道測試 77 4.3.3操作方式與參數設定 79 第五章 研究設備與實驗方法 81 5.1前言 81 5..1.1製程設備 81 5.1.2量測設備 86 5.1.3實驗設備 91 5.2實驗方法 93 5.2.1檢體驅動及分佈 93 5.2.2檢體量測 96 第六章 實驗結果與討論 101 6.1前言 101 6.2 T字型微流道設計( T-R0.5H0.5 )之實驗結果 101 6.3 Y字型微流道設計(Y-R0.5H0.5)之實驗結果 106 6.4 Y字型微流道設計(Y-R2.0H0.5)之實驗結果 111 6.5不同微流道晶片設計之綜合比較 116 6.5.1 [T-R0.5H0.25]與[T-R0.5H0.5]實驗結果之比較 118 6.5.2 [T-R0.5H0.5]與[Y-R0.5H0.5]實驗結果之比較 123 6.5.3 [T-R0.5H0.25]與[Y-R2.0H0.5]實驗結果之比較 127 第七章 結論與未來展望 133 7.1結論 133 7.2未來展望 135 參考文獻 137 附錄A [Y-original]模擬檢體分流流程 143 附錄B [Y-R2.0H0.5]模擬檢體分流流程 151 附錄C 可調適分注器精度測試 159 附錄D 系統誤差及隨機誤差之建立 160 附錄E 分流尖點結構偏移造成流場之影響 161

[1] A. Mikkelsen. Available: http://folk.ntnu.no/fossumj/eit/Introduction.html
[2] Lab-on-Chip.gene-quantification.info. Available: http://www.gene-quantification.de/lab-on-chip.html
[3] P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, "Continuous perfusion microfluidic cell culture array for high‐throughput cell‐based assays," Biotechnology and bioengineering, vol. 89, pp. 1-8, 2005.
[4] M. Focke, F. Stumpf, B. Faltin, P. Reith, D. Bamarni, S. Wadle, et al., "Microstructuring of polymer films for sensitive genotyping by real-time PCR on a centrifugal microfluidic platform," Lab on a Chip, vol. 10, pp. 2519-2526, 2010.
[5] H. Nagai, Y. Murakami, K. Yokoyama, and E. Tamiya, "High-throughput PCR in silicon based microchamber array," Biosensors and Bioelectronics, vol. 16, pp. 1015-1019, 2001.
[6] M. U. Kopp, M. B. Luechinger, and A. Manz, "Continuous flow PCR on a chip," in Micro Total Analysis Systems’ 98, 1998, pp. 7-10.
[7] K. Oh, J. A. Lounsbury, B. L. Poe, Z. Keshishian, and J. P. Landers, "Continuous flow infrared polymerase chain reaction (cfIR-PCR) using an infrared-mediated heating system at constant power."
[8] M. U. Kopp, A. J. De Mello, and A. Manz, "Chemical amplification: continuous-flow PCR on a chip," Science, vol. 280, pp. 1046-1048, 1998.
[9] D. Huh, Y.-s. Torisawa, G. A. Hamilton, H. J. Kim, and D. E. Ingber, "Microengineered physiological biomimicry: organs-on-chips," Lab on a chip, vol. 12, pp. 2156-2164, 2012.
[10] M. Odijk, A. Baumann, W. Lohmann, F. T. G. van den Brink, W. Olthuis, U. Karst, et al., "A microfluidic chip for electrochemical conversions in drug metabolism studies," Lab on a Chip, vol. 9, pp. 1687-1693, 2009.
[11] D. Huh, D. C. Leslie, B. D. Matthews, J. P. Fraser, S. Jurek, G. A. Hamilton, et al., "A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice," Science translational medicine, vol. 4, pp. 159ra147-159ra147, 2012.
[12] Y.-C. Tan, J. Collins, and A. Lee, "Controlled fission of droplet emulsion in bifurcating microfluidic channels," in Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, 2003, pp. 28-31.
[13] C. P. Ody, C. N. Baroud, and E. de Langre, "Transport of wetting liquid plugs in bifurcating microfluidic channels," Journal of colloid and interface science, vol. 308, pp. 231-238, 2007.
[14] D. Link, S. L. Anna, D. Weitz, and H. Stone, "Geometrically mediated breakup of drops in microfluidic devices," Physical Review Letters, vol. 92, p. 054503, 2004.
[15] M. Yamada, S. Doi, H. Maenaka, M. Yasuda, and M. Seki, "Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis," Journal of colloid and interface science, vol. 321, pp. 401-407, 2008.
[16] P.-C. Chen, M.-H. Wu, and Y.-N. Wang, "Microchannel geometry design for rapid and uniform reagent distribution," Microfluidics and Nanofluidics, pp. 1-11, 2013.
[17] Y. Song, M. Baudoin, P. Manneville, and C. N. Baroud, "The air–liquid flow in a microfluidic airway tree," Medical Engineering & Physics, vol. 33, pp. 849-856, 2011.
[18] C. K. Malek and V. Saile, "Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review," Microelectronics Journal, vol. 35, pp. 131-143, 2004.
[19] S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," Electron Devices, IEEE Transactions on, vol. 26, pp. 1880-1886, 1979.
[20] D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry, vol. 64, pp. 1926-1932, 1992.
[21] C. H. Ahn, C. Jin-Woo, G. Beaucage, J. H. Nevin, L. Jeong-Bong, A. Puntambekar, et al., "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proceedings of the IEEE, vol. 92, pp. 154-173, 2004.
[22] P. Mela, A. van den Berg, Y. Fintschenko, E. B. Cummings, B. A. Simmons, and B. J. Kirby, "The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices," ELECTROPHORESIS, vol. 26, pp. 1792-1799, 2005.
[23] Y. Yang, C. Li, J. Kameoka, K. H. Lee, and H. G. Craighead, "A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry," Lab on a Chip, vol. 5, pp. 869-876, 2005.
[24] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of Plastic Microfluid Channels by Imprinting Methods," Analytical Chemistry, vol. 69, pp. 4783-4789, 1997.
[25] E. Vazquez, C. Rodriguez, A. Elias-Zuniga, and J. Ciurana, "An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling," The International Journal of Advanced Manufacturing Technology, vol. 51, pp. 945-955, 2010.
[26] J. S. Mecomber, D. Hurd, and P. A. Limbach, "Enhanced machining of micron-scale features in microchip molding masters by CNC milling," International Journal of Machine Tools and Manufacture, vol. 45, pp. 1542-1550, 2005.
[27] M. Y. Ali, "Fabrication of microfluidic channel using micro end milling and micro electrical discharge milling," International Journal of Mechanical and Materials Engineering (IJMME), vol. 4, pp. 93-97, 2009.
[28] M. Hupert, et al., "Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices," Microfluidics and Nanofluidics, vol. 3, pp. 1-11, 2007/02/01 2007.
[29] E. S. Topal, "The role of stepover ratio in prediction of surface roughness in flat end milling," International Journal of Mechanical Sciences, vol. 51, pp. 782-789, 2009.
[30] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan, "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B: Chemical, vol. 114, pp. 239-247, 2006.
[31] D. Mijatovic, J. C. T. Eijkel, and A. van den Berg, "Technologies for nanofluidic systems: top-down vs. bottom-up-a review," Lab on a Chip, vol. 5, pp. 492-500, 2005.
[32] S. K. Sia and G. M. Whitesides, "Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies," Electrophoresis, vol. 24, pp. 3563-3576, 2003.
[33] Y.-C. Su, J. Shah, and L. Lin, "Implementation and analysis of polymeric microstructure replication by micro injection molding," Journal of Micromechanics and Microengineering, vol. 14, p. 415, 2004.
[34] H. D. Rowland and W. P. King, "Polymer deformation and filling modes during microembossing," Journal of Micromechanics and Microengineering, vol. 14, p. 1625, 2004.
[35] G. S. Fiorini and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application," BioTechniques, vol. 38, pp. 429-446, 2005.
[36] H. Becker and C. Gartner, "Polymer microfabrication technologies for microfluidic systems," Analytical and Bioanalytical Chemistry, vol. 390, pp. 89-111, 2008.
[37] P.-C. Chen, C.-W. Pan, W.-C. Lee, and K.-M. Li, "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate," The International Journal of Advanced Manufacturing Technology, vol. 71, pp. 1623-1630, 2014.
[38] F. Dang, S. Shinohara, O. Tabata, Y. Yamaoka, M. Kurokawa, Y. Shinohara, et al., "Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method," Lab on a Chip, vol. 5, pp. 472-478, 2005.
[39] C.-W. Tsao and D. DeVoe, "Bonding of thermoplastic polymer microfluidics," Microfluidics and Nanofluidics, vol. 6, pp. 1-16, 2009.
[40] L. Du, H. Chang, M. Song, and C. Liu, "A method of water pretreatment to improve the thermal bonding rate of PMMA microfluidic chip," Microsystem Technologies, vol. 18, pp. 423-428, 2012.
[41] X. Zhu, G. Liu, Y. Guo, and Y. Tian, "Study of PMMA thermal bonding," Microsystem Technologies, vol. 13, pp. 403-407, 2007.

QR CODE