簡易檢索 / 詳目顯示

研究生: Henok Atile Kibret
Henok Atile Kibret
論文名稱: Chemical Looping Gasification of Spent Coffee Grounds in a CO2 and steam atmosphere
Chemical Looping Gasification of Spent Coffee Grounds in a CO2 and steam atmosphere
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 162
中文關鍵詞: chemical looping gasificationOxygen-carrier (iron-ore)spent coffee grounds (SCG)semi-fluidized bed reactorCO2steam
外文關鍵詞: chemical looping gasification, Oxygen-carrier (iron-ore), spent coffee grounds (SCG), semi-fluidized bed reactor, CO2, steam
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


In the 21st century, millions of researches are carrying out all over the world, to advance our civilization, to find answers to our queries and problems as well as to improve our life standard. However, some solutions we have developed to tackle one problem causes another problem and put our life in a cause and effect paradox. Climate change, environmental pollution, and resource depletion are some of the results of the paradox. In our present-day world where a few controls most of the world's wealth, those problems bear the biggest challenge to the people whose life depends on the small-scale agriculture. Thus, reducing our wastes, finding alternative energy fuels & chemicals, and developing CO2 free technologies and processes are the goals of this research.
Spent coffee grounds (SCG) is one of the major wastes in the coffee industries and considering coffee is the second-largest traded commodity next to petroleum as well as the second popular drink (next to water), there is a huge potential of the waste resource coming from this industry from all directions of our planet. Hence, by carrying out elemental analysis and calorific value measurement, the SCG elemental composition was nearly 50% and 7% C and H2 respectively and has about 20.7 MJ/kg net calorific value. These results indicate the potential of SCG as an alternative fuel and a chemical looping gasification procedure in CO2 and steam gasification medium in a semi-fluidized bed batch reactor, using iron ore as an oxygen carrier (OC) was developed.
To understand the thermal decomposition, the physical and structural properties of the SCG and OC, the TGA, SEM, and XRD analyses were carried out. Moreover, the crystal and morphological characteristics of the OC were studied before and after the reduction of the iron-ore in the fluidized bed reactor. The gasification product gases were also analyzed using NDIR and GC machines, hence the carbon conversion, heating value, and cold gas efficiency of the process were determined accordingly.
CO, CO2, CH4, H2, C2H4, and char were the main products of the chemical looping process. When the SCG was gasified by the OC, some char was left mixed with the OC on the reactor bed and the iron ore didn’t fully reduce due to the low density of the SCG, which suspended above the bed. However, adding steam and CO2 gasification medium improved the reactivity of the char and 100% of carbon conversion, and reasonable LHV and cold gas efficiency improvement was achieved at a higher CO2/B molar ratio, 1 kg/kg OC/B ratio and 0.27 S/B molar ratio. In general, the chemical looping process showed the highest performance of solid fuel to gaseous fuel conversion in the steam and CO2 mixed atmosphere than using it in CO2 or steam medium separately.
The post-reduction XRD and SEM-EDX analysis of iron ore (hematite) showed the diffusion of some alkali metals such as Mg, K, and Ca in the partially reduced iron ore (magnetite). From the XRF analysis of the SCG ash and reduced iron ore, more or less similar concentrations of alkali metals were identified. As a result of the diffusions of these alkali metals, the crystal structure of the reduced iron ore showed a slight shift to the right.

Abstract i Acknowledgment iii List of Figures ix List of Tables xiii 1. Introduction 1 1.1. Background 1 1.2. Objective 5 1.3. Motivation 5 2. Literature review 7 2.1. Biomass 7 2.1.1. Biomass Properties 8 2.1.2. Coffee Waste Biomass Resource and Characteristics 13 2.2. Biomass conversion 17 2.2.1. Biochemical Conversion 18 2.2.2. Thermochemical conversion 19 2.3. Chemical Looping Gasification 32 2.3.1. Gasification process Parameters 34 2.3.1.1. Temperature 35 2.3.1.2. Gasifying agent 39 2.3.1.3. The moisture content of the feedstock 41 2.3.1.4. Biomass type, particle size, and feeding rate 43 2.3.1.5. The ratio of looping material to biomass (effect of catalyst) 44 2.3.1.6. Gasification technologies 45 2.4. Chemical Looping materials 47 2.5. Preparation of the oxygen carrier 51 2.6. Plasma Gasification 52 2.7. Kinetic Modeling of chemical looping gasification 53 2.8. Concluding remarks 56 3. Experimental Methods and Procedures 57 3.1. Materials used 57 3.2. Experimental Procedures and methods 59 3.2.1. Preparation and Characterization of SCG 59 3.2.2. Preparation and characterization of OC (Iron Ore) 65 3.3. Apparatus Used 70 3.3.1. Bomb Calorimeter 70 3.3.2. X-ray Diffraction 71 3.3.3. SEM 71 3.3.4. Energy Dispersive X-ray Fluorescence (EDXRF)- EPSILON 1 72 3.3.5. NDIR - Non-Dispersive Infra-Red (NDIR, Molecular Analysis 6000i) 73 3.3.6. Gas Chromatography (GC-TCD/FID) 73 3.3.7. Lab-scaled semi-fluidized bed reactor 74 4. Results and Discussion 75 4.1. SCG characterization 76 4.1.1. Ultimate and Proximate analysis 76 4.1.2. Physical Characteristics 79 4.2. Characteristics of Oxygen carrier (Iron Ore) 81 4.3. Oxygen carrier characteristic after the reduction in the semi-fluidized bed reactor 84 5.3. 88 4.4. Gasification operation in a Semi-Fluidized bed reactor 90 4.4.1. Effect of the reactor temperature on the carbon conversion and heating value of the synthesis gas in an empty bed 91 4.4.2. Effect of the reactor temperature on the carbon conversion and heating value of the synthesis gas in the presence of OC 99 4.4.3. Effect of OC to SCG weight ratio 106 4.4.4. Effect of steam to SCG molar ratio 111 4.4.5. Effect of CO2 to SCG molar ratio 117 4.4.6. The combined effect of OC and gasifying medium 123 5. Conclusion and Future Work 139 6. References 143 7. Appendix 159 A. Ultimate analysis 159 B. XRF results of OC and Ash 161 1. Iron ore 161 2. Iron ore reduced by SCG 161 3. SCG Ash 162

Abdoulmoumine, N. et al. (2015) ‘A review on biomass gasification syngas cleanup’, Applied Energy. Elsevier Ltd, 155, pp. 294–307. doi: 10.1016/j.apenergy.2015.05.095.
Agarwal, A. K. et al. (2018) Coal and Biomass Gasification: Recent Advances and Future Challenges. Available at: https://www.amazon.com/Coal-Biomass-Gasification-Environment-Sustainability/dp/9811073341/ref=sr_1_2?ie=UTF8&qid=1513681191&sr=8-2&keywords=Coal+and+Biomass+Gasification.
Al-Hamamre, Z. et al. (2012) ‘Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing’, Fuel. Elsevier Ltd, 96(x), pp. 70–76. doi: 10.1016/j.fuel.2012.01.023.
Atabani, A. E. et al. (2018) ‘Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study’, Journal of the Air and Waste Management Association. doi: 10.1080/10962247.2017.1367738.
Ayub, S. (2015) ‘Particulate matter emission from thermal power plant : parent material , formation mechanism , health concerns , control devices - a review’, (August).
Bai, Y. et al. (2014) ‘Synergistic effect between CO2 and H2O on reactivity during coal chars gasification’, Fuel. Elsevier, 126, pp. 1–7. doi: 10.1016/j.fuel.2014.02.025.
Baig K, S. and M, Y. (2017) ‘Coal Fired Power Plants: Emission Problems and Controlling Techniques’, Journal of Earth Science & Climatic Change, 08(07). doi: 10.4172/2157-7617.1000404.
Baruah, D. and Baruah, D. C. (2014) ‘Modeling of biomass gasification: A review’, Renewable and Sustainable Energy Reviews, 39, pp. 806–815. doi: 10.1016/j.rser.2014.07.129.
Basu, P. (2013) Biomass Gasification, Pyrolysis, and Torrefaction Practical Design and Theory. Second Edi. Elsevier.
Bayham, S. C. et al. (2016) ‘Chemical looping technology for energy and chemical production’, Wiley Interdisciplinary Reviews: Energy and Environment, 5(2), pp. 216–241. doi: 10.1002/wene.173.
Bermudez, J. M. and Fidalgo, B. (2016) Production of bio-syngas and bio-hydrogen via gasification, Handbook of Biofuels Production: Processes and Technologies: Second Edition. doi: 10.1016/B978-0-08-100455-5.00015-1.
Boerrigter, H. and Rauch, R. (2006) ‘Review of applications of gases from biomass gasification’, ECN Biomass, Coal and Environmental …, (June), p. 33.
Bok, J. P. et al. (2012) ‘Fast pyrolysis of coffee grounds: Characteristics of product yields and biocrude oil quality’, Energy. Elsevier Ltd, 47(1), pp. 17–24. doi: 10.1016/j.energy.2012.06.003.
Brown, A. and Le Feuvre, P. (2017) ‘Technology Roadmap: Delivering Sustainable Bioenergy’, International Energy Agency (IEA), p. 94. Available at: http://www.ieabioenergy.com/publications/technology-roadmap-delivering-sustainable-bioenergy/.
Butterman, H. C. and Castaldi, M. J. (2007) ‘Influence of CO2 injection on biomass gasification’, in Industrial and Engineering Chemistry Research, pp. 8875–8886. doi: 10.1021/ie071160n.
Caetano, N. S. et al. (2014) ‘Spent coffee grounds for biodiesel production and other applications’, Clean Technologies and Environmental Policy, 16(7), pp. 1423–1430. doi: 10.1007/s10098-014-0773-0.
Caetano, N. S., Silva, V. F. M. and Mata, T. M. (2012) ‘C CH HE EM MI IC CA AL L E EN NG GI IN NE EE ER RI IN NG G T TR RA AN NS SA AC CT TI IO ON NS S Valorization of Coffee Grounds for Biodiesel Production’, 26, pp. 267–272. Available at: http://www.aidic.it/cet/12/26/045.pdf.
Cameron, L. et al. (2014) ‘Biomass Waste-to-Energy Toolkit for Development Practitioners ECN The Green House SNV Netherlands Development Organisation’, (August), pp. 2–88. Available at: http://www.ecn.nl/docs/library/report/2014/o14054.pdf.
Canabarro, N. et al. (2013) ‘Thermochemical processes for biofuels production from biomass’, Sustainable Chemical Processes, 1(1), p. 22. doi: 10.1186/2043-7129-1-22.
Cao, W. et al. (2016) ‘Release of alkali metals during biomass thermal conversion.’, Arch Ind Biotechnol, 1(1), pp. 1–3. Available at: http://www.alliedacademies.org/archives-of-industrial-biotechnology/.
Cheng, Y., Thow, Z. and Wang, C. H. (2016) ‘Biomass gasification with CO2 in a fluidized bed’, Powder Technology, 296, pp. 87–101. doi: 10.1016/j.powtec.2014.12.041.
Chiu, P. C. and Ku, Y. (2012) ‘Chemical looping process - a novel technology for inherent CO2 capture’, Aerosol and Air Quality Research, 12(6), pp. 1421–1432. doi: 10.4209/aaqr.2012.08.0215.
Choudhury, H. A., Chakma, S. and Moholkar, V. S. (2015) Biomass Gasification Integrated Fischer-Tropsch Synthesis: Perspectives, Opportunities and Challenges, Recent Advances in Thermochemical Conversion of Biomass. doi: 10.1016/B978-0-444-63289-0.00014-4.
Codignole Luz, F. et al. (2018) ‘Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process’, Bioresource Technology. Elsevier, 256(February), pp. 102–109. doi: 10.1016/j.biortech.2018.02.021.
Couto, N. et al. (2013) ‘Influence of the biomass gasification processes on the final composition of syngas’, Energy Procedia. Elsevier B.V., 36, pp. 596–606. doi: 10.1016/j.egypro.2013.07.068.
Dupont, C. et al. (2007) ‘Study about the kinetic processes of biomass steam gasification’, Fuel, 86(1–2), pp. 32–40. doi: 10.1016/j.fuel.2006.06.011.
Dutta, A., Acharya, B. and Basu, P. (2009) ‘Chemical looping gasification of biomass for hydrogen enriched gas production with in-process carbon-dioxide capture’, Proceedings of the 20th International Conference on Fluidized Bed Combustion, (March 2019), pp. 636–641. doi: 10.1021/ef9003889.
Ebrahimi, A. et al. (2015) ‘Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit’, Energy. Elsevier, 90, pp. 1298–1316. doi: 10.1016/j.energy.2015.06.083.
Emami Taba, L. et al. (2012) ‘The effect of temperature on various parameters in coal, biomass and CO-gasification: A review’, Renewable and Sustainable Energy Reviews. Elsevier, 16(8), pp. 5584–5596. doi: 10.1016/j.rser.2012.06.015.
Fabry, F. et al. (2013) ‘Waste gasification by thermal plasma: A review’, Waste and Biomass Valorization, 4(3), pp. 421–439. doi: 10.1007/s12649-013-9201-7.
Florin, N. H. and Harris, A. T. (2007) ‘Hydrogen production from biomass coupled with carbon dioxide capture: The implications of thermodynamic equilibrium’, International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2007.06.016.
Franco, C. et al. (2003) ‘The study of reactions influencing the biomass steam gasification process’, Fuel, 82(7), pp. 835–842. doi: 10.1016/S0016-2361(02)00313-7.
Garcia-Freites, S. et al. (2019) ‘The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector’, Biomass Conversion and Biorefinery. Biomass Conversion and Biorefinery. doi: 10.1007/s13399-019-00480-8.
Garcia, L. et al. (2001) ‘CO2 as a gasifying agent for gas production from pine sawdust at low temperatures using a Ni/Al coprecipitated catalyst’, Fuel processing technology, 69(2), pp. 157–174. doi: 10.1016/S0378-3820(00)00138-7.
Goyal, H. B., Saxena, R. C. and Seal, D. (2008) Thermochemical conversion of biomass to liquids and gaseous fuels, Handbook of Plant-Based Biofuels. doi: 10.1201/9780789038746.
Goyal, H. B., Seal, D. and Saxena, R. C. (2008) ‘Bio-fuels from thermochemical conversion of renewable resources: A review’, Renewable and Sustainable Energy Reviews, 12(2), pp. 504–517. doi: 10.1016/j.rser.2006.07.014.
Gruczyńska, E. et al. (2018) ‘Furan in roasted, ground and brewed coffee’, Roczniki Panstwowego Zakladu Higieny, 69(2), pp. 111–118. Available at: http://www.ncbi.nlm.nih.gov/pubmed/29766689.
Guizani, C. (2014a) ‘Effects of CO2 on the biomass pyro-gasification in High Heating Rate and Low Heating Rate conditions’, p. 277. Available at: https://tel.archives-ouvertes.fr/tel-01146829.
Guizani, C. (2014b) ‘Effects of CO2 on the biomass pyro-gasification in High Heating Rate and Low Heating Rate conditions’, p. 277.
Guizani, C. (2014c) ‘Effects of CO2 on the biomass pyro-gasification in High Heating Rate and Low Heating Rate conditions’, p. 47. Available at: https://tel.archives-ouvertes.fr/tel-01146829.
Guizani, C., Escudero Sanz, F. J. and Salvador, S. (2013) ‘The gasification reactivity of high-heating-rate chars in single and mixed atmospheres of H2O and CO2’, Fuel. Elsevier Ltd, 108, pp. 812–823. doi: 10.1016/j.fuel.2013.02.027.
Guo, Q., Liu, Y. and Tian, H. (2009a) ‘Recent advances on preparation and characteristics of oxygen carrier particles’, International Review of Chemical Engineering, 1(4), pp. 357–368. Available at: http://www.praiseworthyprize.org/jsm/index.php?journal=irecon&page=article&op=view&path%5B%5D=1871r.
Guo, Q., Liu, Y. and Tian, H. (2009b) ‘Recent advances on preparation and characteristics of oxygen carrier particles’, International Review of Chemical Engineering, 1(4), pp. 357–368.
Hernández, J. J., Ballesteros, R. and Aranda, G. (2013) ‘Characterisation of tars from biomass gasification: Effect of the operating conditions’, Energy. Elsevier Ltd, 50(1), pp. 333–342. doi: 10.1016/j.energy.2012.12.005.
Hlina, M. et al. (2014) ‘Production of high quality syngas from argon/water plasma gasification of biomass and waste’, Waste Management. Elsevier Ltd, 34(1), pp. 63–66. doi: 10.1016/j.wasman.2013.09.018.
Hornung, A. (ed.) (2014) Transformation of Biomass. doi: 10.1002/9781118693643.
Hu, J. et al. (2018) ‘Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier’, Bioresource Technology. Elsevier, 263(December 2017), pp. 273–279. doi: 10.1016/j.biortech.2018.02.064.
Huang, Z. et al. (2015) ‘Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier’, Applied Energy. Elsevier Ltd, 157(2), pp. 546–553. doi: 10.1016/j.apenergy.2015.03.033.
Huang, Z. et al. (2016) ‘Chemical looping gasification of biomass char using iron ore as an oxygen carrier’, International Journal of Hydrogen Energy. Elsevier Ltd, 41(40), pp. 17871–17883. doi: 10.1016/j.ijhydene.2016.07.089.
HUANG, Z. et al. (2014) ‘Chemical-looping gasification of biomass in a 10 kWth interconnected fluidized bed reactor using Fe2O3/Al2O3 oxygen carrier’, Journal of Fuel Chemistry and Technology, 42(8), pp. 922–931. doi: 10.1016/s1872-5813(14)60039-6.
Iannello, S., Morrin, S. and Materazzi, M. (2020) ‘Fluidised Bed Reactors for the Thermochemical Conversion of Biomass and Waste’, KONA Powder and Particle Journal, (October), pp. 1–18. doi: 10.14356/kona.2020016.
Jagdale, P. et al. (2019) ‘Waste coffee ground biochar: A material for humidity sensors’, Sensors (Switzerland), 19(4), pp. 1–16. doi: 10.3390/s19040801.
Janissen, B. and Huynh, T. (2018a) ‘Chemical composition and value-adding applications of coffee industry by-products: A review’, Resources, Conservation and Recycling, 128(October 2017), pp. 110–117. doi: 10.1016/j.resconrec.2017.10.001.
Janissen, B. and Huynh, T. (2018b) ‘Chemical composition and value-adding applications of coffee industry by-products: A review’, Resources, Conservation and Recycling, 128(July 2017), pp. 110–117. doi: 10.1016/j.resconrec.2017.10.001.
Kibret, H. A., Venkata Ramayya, A. and Abunie, B. B. (2016) ‘Design, fabrication and sensitvty testing of an efficient bone pyrolysis kiln and biochar based indigenous fertilizer pelletizing machine for linking renewable energy with climate smart agriculture’, ARPN Journal of Engineering and Applied Sciences, 11(12).
Kim, Y. et al. (2019) ‘Investigation into role of CO2 in two-stage pyrolysis of spent coffee grounds’, Bioresource Technology. Elsevier, 272(October 2018), pp. 48–53. doi: 10.1016/j.biortech.2018.10.009.
Klass, D. L. (1998) Biomass for Renewable Energy, Fuels, and Chemicals. Elsevier.
Klasson, K. T. (2017) ‘Biochar characterization and a method for estimating biochar quality from proximate analysis results’, Biomass and Bioenergy. Elsevier Ltd, 96, pp. 50–58. doi: 10.1016/j.biombioe.2016.10.011.
Kobayashi, N. and Fan, L. S. (2011) ‘Biomass direct chemical looping process: A perspective’, Biomass and Bioenergy. Elsevier Ltd, 35(3), pp. 1252–1262. doi: 10.1016/j.biombioe.2010.12.019.
Konrad, M. (2010) ‘Plasma Aided Gasification of Biomass and Plastics using CO2 as Oxidizer Plasma Aided Gasification of Biomass and Plastics using CO 2 as Oxidizer’, (October 2014).
Kraussler, M. et al. (2018) ‘Hydrogen production within a polygeneration concept based on dual fluidized bed biomass steam gasification’, Biomass and Bioenergy. Elsevier Ltd, 111, pp. 320–329. doi: 10.1016/j.biombioe.2016.12.008.
Ktori, R., Kamaterou, P. and Zabaniotou, A. (2018) ‘Spent coffee grounds valorization through pyrolysis for energy and materials production in the concept of circular economy’, Materials Today: Proceedings. Elsevier Ltd, 5(14), pp. 27582–27588. doi: 10.1016/j.matpr.2018.09.078.
Kumar, G. S., Gupta, A. and Viswanadham, M. (2018) ‘Design of lab-scale downdraft gasifier for biomass gasification’, IOP Conference Series: Materials Science and Engineering, 455(1). doi: 10.1088/1757-899X/455/1/012051.
Li, C. and Suzuki, K. (2009) ‘Tar property, analysis, reforming mechanism and model for biomass gasification-An overview’, Renewable and Sustainable Energy Reviews, 13(3), pp. 594–604. doi: 10.1016/j.rser.2008.01.009.
Li, X., Strezov, V. and Kan, T. (2014) ‘Energy recovery potential analysis of spent coffee grounds pyrolysis products’, Journal of Analytical and Applied Pyrolysis. Elsevier B.V., 110(1), pp. 79–87. doi: 10.1016/j.jaap.2014.08.012.
Li, Z. et al. (2019) ‘CFD simulation of a fluidized bed reactor for biomass chemical looping gasification with continuous feedstock’, Energy Conversion and Management. Elsevier, 201(October), p. 112143. doi: 10.1016/j.enconman.2019.112143.
Liu, C. and Wang, W. (2018) ‘Chemical looping gasification of pyrolyzed biomass and coal char with copper ferrite as an oxygen carrier’, Journal of Renewable and Sustainable Energy, 10(6). doi: 10.1063/1.5040379.
Maniatis, K. (1986) ‘Fluidized bed gasification of biomass’, The Chemical Engineering Journal, 22(3), pp. 221–227. Available at: http://eprints.aston.ac.uk/10232/.
Mašek, O. et al. (2008) ‘A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification’, Biomass and Bioenergy, 32(1), pp. 78–89. doi: 10.1016/j.biombioe.2007.07.007.
Mata, T. M., Martins, A. A. and Caetano, N. S. (2018) ‘Bio-refinery approach for spent coffee grounds valorization’, Bioresource Technology, 247(July 2017), pp. 1077–1084. doi: 10.1016/j.biortech.2017.09.106.
Mauerhofer, A. M. et al. (2019) ‘CO2 gasification in a dual fluidized bed reactor system: Impact on the product gas composition’, Fuel. Elsevier, 253(April), pp. 1605–1616. doi: 10.1016/j.fuel.2019.04.168.
Mazzoni, L. et al. (2017) ‘A comparison of energy recovery from MSW through plasma gasification and entrained flow gasification’, Energy Procedia. Elsevier B.V., 142, pp. 3480–3485. doi: 10.1016/j.egypro.2017.12.233.
Mitsuoka, K. et al. (2011) ‘Gasification of woody biomass char with CO2: The catalytic effects of K and Ca species on char gasification reactivity’, Fuel Processing Technology. Elsevier B.V., 92(1), pp. 26–31. doi: 10.1016/j.fuproc.2010.08.015.
Molino, A., Chianese, S. and Musmarra, D. (2016) ‘Biomass gasification technology: The state of the art overview’, Journal of Energy Chemistry. Elsevier B.V., 25(1), pp. 10–25. doi: 10.1016/j.jechem.2015.11.005.
Mondal, P., Dang, G. S. and Garg, M. O. (2011) ‘Syngas production through gasification and cleanup for downstream applications - Recent developments’, Fuel Processing Technology. Elsevier B.V., 92(8), pp. 1395–1410. doi: 10.1016/j.fuproc.2011.03.021.
Motta, I. L. et al. (2018) ‘Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects’, Renewable and Sustainable Energy Reviews, 94(May), pp. 998–1023. doi: 10.1016/j.rser.2018.06.042.
Murthy, P. S. and Madhava Naidu, M. (2012) ‘Sustainable management of coffee industry by-products and value addition - A review’, Resources, Conservation and Recycling. Elsevier B.V., 66, pp. 45–58. doi: 10.1016/j.resconrec.2012.06.005.
Obruca, S. et al. (2015) ‘Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids’, New Biotechnology. Elsevier B.V., 32(6), pp. 569–574. doi: 10.1016/j.nbt.2015.02.008.
Pohořelý, M. et al. (2014) ‘CO2 as moderator for biomass gasification’, Fuel, 117(PART A), pp. 198–205. doi: 10.1016/j.fuel.2013.09.068.
Prabhansu et al. (2015) ‘A review on the fuel gas cleaning technologies in gasification process’, Journal of Environmental Chemical Engineering. Elsevier B.V., 3(2), pp. 689–702. doi: 10.1016/j.jece.2015.02.011.
Primaz, C. T. et al. (2018) ‘Influence of the temperature in the yield and composition of the bio-oil from the pyrolysis of spent coffee grounds: Characterization by comprehensive two dimensional gas chromatography’, Fuel, 232(January), pp. 572–580. doi: 10.1016/j.fuel.2018.05.097.
Rezaei, F. et al. (2015) ‘SO<inf>x</inf>/NO<inf>x</inf> Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions’, Energy and Fuels, 29(9), pp. 5467–5486. doi: 10.1021/acs.energyfuels.5b01286.
Rollinson, A. N. (2016) ‘Gasification reactor engineering approach to understanding the formation of biochar properties’, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2192). doi: 10.1098/rspa.2015.0841.
Rutberg, P. G. et al. (2011) ‘On efficiency of plasma gasification of wood residues’, Biomass and Bioenergy. Elsevier Ltd, 35(1), pp. 495–504. doi: 10.1016/j.biombioe.2010.09.010.
Saddawi, A., Jones, J. M. and Williams, A. (2012) ‘Influence of alkali metals on the kinetics of the thermal decomposition of biomass’, Fuel Processing Technology. Elsevier B.V., 104, pp. 189–197. doi: 10.1016/j.fuproc.2012.05.014.
Sanlisoy, A. and Carpinlioglu, M. O. (2017) ‘A review on plasma gasification for solid waste disposal’, International Journal of Hydrogen Energy. Elsevier Ltd, 42(2), pp. 1361–1365. doi: 10.1016/j.ijhydene.2016.06.008.
Schill, L. (2014) Alternative catalysts and technologies for NOx removal from biomass- and wastefired plants. Technical University of Denmark (DTU): Technical University of Denmark (DTU).
Septien, S. et al. (2012) ‘Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000-1400°C)’, Fuel. Elsevier Ltd, 97, pp. 202–210. doi: 10.1016/j.fuel.2012.01.049.
Shaukat, S. S. (2012) Progress in Biomass and Bioenergy Production, Progress in Biomass and Bioenergy Production. doi: 10.5772/972.
Shen, T., Ge, H. and Shen, L. (2018) ‘Characterization of combined Fe-Cu oxides as oxygen carrier in chemical looping gasification of biomass’, International Journal of Greenhouse Gas Control. Elsevier, 75(May), pp. 63–73. doi: 10.1016/j.ijggc.2018.05.021.
Sikarwar, V. S. et al. (2017) ‘Progress in biofuel production from gasification’, Progress in Energy and Combustion Science, 61, pp. 189–248. doi: 10.1016/j.pecs.2017.04.001.
Singh, L. and Kalia, V. C. (2017) Waste biomass management - A holistic approach, Waste Biomass Management - A Holistic Approach. doi: 10.1007/978-3-319-49595-8.
Song, T. et al. (2012) ‘Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds’, Biomass and Bioenergy. Elsevier Ltd, 36, pp. 258–267. doi: 10.1016/j.biombioe.2011.10.021.
Sriram, N. and Shahidehpour, M. (2005) ‘Renewable biomass energy’, pp. 1910–1915. doi: 10.1109/pes.2005.1489459.
Tamošiunas, A. et al. (2017) ‘The potential of thermal plasma gasification of olive pomace charcoal’, Energies, 10(5), pp. 1–14. doi: 10.3390/en10050710.
Tanger, P. et al. (2013a) ‘Biomass for thermochemical conversion: targets and challenges’, Frontiers in Plant Science, 4(July), pp. 1–20. doi: 10.3389/fpls.2013.00218.
Tanger, P. et al. (2013b) ‘Biomass for thermochemical conversion: targets and challenges’, Frontiers in Plant Science, 4(July). doi: 10.3389/fpls.2013.00218.
Valderrama Rios, M. L. et al. (2018) ‘Reduction of tar generated during biomass gasification: A review’, Biomass and Bioenergy. Elsevier Ltd, 108(July 2017), pp. 345–370. doi: 10.1016/j.biombioe.2017.12.002.
Valin, S. et al. (2016) ‘CO2 as a substitute of steam or inert transport gas in a fluidised bed for biomass gasification’, Fuel. Elsevier Ltd, 177, pp. 288–295. doi: 10.1016/j.fuel.2016.03.020.
WBA (2018) ‘Global Bioenergy Statistics 2018’, World Bioenergy Association, p. 43.
Weinber, B. A. and Bealer, B. K. (2001) ‘The world of caffeine: the science and culture of the world’s most popular drug’, Choice Reviews Online, 39(01), pp. 39-0354-39–0354. doi: 10.5860/choice.39-0354.
Woolcock, P. J. and Brown, R. C. (2013) ‘A review of cleaning technologies for biomass-derived syngas’, Biomass and Bioenergy. Elsevier Ltd, 52, pp. 54–84. doi: 10.1016/j.biombioe.2013.02.036.
Wu, Y. et al. (2018) ‘Syngas production by chemical looping gasification of biomass with steam and CaO additive’, International Journal of Hydrogen Energy. Elsevier Ltd, 43(42), pp. 19375–19383. doi: 10.1016/j.ijhydene.2018.08.197.
Xiao, Y. et al. (2017) ‘Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system’, Fuel Processing Technology. Elsevier B.V., 165, pp. 54–61. doi: 10.1016/j.fuproc.2017.05.013.
Xu, G. et al. (2006a) ‘Gasification of coffee grounds in dual fluidized bed: Performance evaluation and parametric investigation’, Energy and Fuels, 20(6), pp. 2695–2704. doi: 10.1021/ef060120d.
Xu, G. et al. (2006b) ‘Gasification of coffee grounds in dual fluidized bed: Performance evaluation and parametric investigation’, Energy and Fuels, 20(6), pp. 2695–2704. doi: 10.1021/ef060120d.
Zając, G. et al. (2018) ‘Chemical characteristics of biomass ashes’, Energies, 11(11), pp. 1–15. doi: 10.3390/en11112885.
Zeng, J. et al. (2017) ‘Chemical looping pyrolysis-gasification of biomass for high H 2 /CO syngas production’, Fuel Processing Technology. Elsevier, 168(August), pp. 116–122. doi: 10.1016/j.fuproc.2017.08.036.
Zhang, L., Xu, C. (Charles) and Champagne, P. (2010) ‘Overview of recent advances in thermo-chemical conversion of biomass’, Energy Conversion and Management. Elsevier Ltd, 51(5), pp. 969–982. doi: 10.1016/j.enconman.2009.11.038.
Zhao, X., Zhou, H., Sikarwar, V. S., Zhao, M., Park, A.-H. A., Fennell, P. S., Shen, L. and Fan, L.-S. (2017a) ‘Biomass-based chemical looping technologies: the good, the bad and the future’, Energy & Environmental Science. Royal Society of Chemistry, 10(9), pp. 1885–1910. doi: 10.1039/C6EE03718F.
Zhao, X., Zhou, H., Sikarwar, V. S., Zhao, M., Park, A.-H. A., Fennell, P. S., Shen, L. and Fan, L.-S. (2017b) ‘Biomass-based chemical looping technologies: the good, the bad and the future’, Energy & Environmental Science, pp. 1885–1910. doi: 10.1039/C6EE03718F.
Zhao, X., Zhou, H., Sikarwar, V. S., Zhao, M., Park, A.-H. A., Fennell, P. S., Shen, L. and Fan, L. S. (2017) ‘Biomass-based chemical looping technologies: The good, the bad and the future’, Energy and Environmental Science. Royal Society of Chemistry, 10(9), pp. 1885–1910. doi: 10.1039/c6ee03718f.

無法下載圖示 全文公開日期 2025/08/09 (校內網路)
全文公開日期 2025/08/09 (校外網路)
全文公開日期 2025/08/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE