簡易檢索 / 詳目顯示

研究生: 羅仕宏
SHI-HONG LUO
論文名稱: 擺線齒輪齒形精度評估
PRECISION EVALUATION OF TOOTH PROFILE FOR CYCLOIDAL GEARS
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 林柏廷
Po-Ting Lin
吳育仁
Wu-Yu Ren
陳思宏
Szu-Hung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 66
中文關鍵詞: 擺線齒輪B-spline擬合節距誤差齒形誤差
外文關鍵詞: Cycloidal gears, b-spline fitting, pitch error, tooth profile error
相關次數: 點閱:218下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於工廠生產逐漸朝自動化發展,機械手臂取代人工為目前趨勢。而因機械手臂關節出力大,需使用小體積高速比之精密減速機以增加扭矩。因此具有高齒數比、小型、質輕與低噪音等優點的擺線齒輪很常被應用在機器手臂。擺線齒輪的齒形精度要求非常高,本論文目的在於發展擺線齒輪精度評估方式,提出精度評估數學模式。首先讀入量測齒形2D點資料,透過最佳化方法中的共軛梯度法和一維搜索法中的進退法與黃金分割法將所有量測點做中心校正。接著利用B-spline曲線擬合方式將量測點擬合,為了確保擬合曲線的情況,會再進一步計算出擬合誤差。確認了擬合誤差的狀況後利用節圓半徑找出每一齒的左右齒形之節圓點。本論文對於擺線齒輪評估的內容主要分為兩個部分,第一部分為節距誤差評估。利用找出的節圓點後配合DIN所定義的計算方式就能夠評估擺線齒形的節距誤差。依據DIN3960[19]所定義的節距誤差評估計算項目有三種,包含節距誤差、累積節距誤差以及偏擺誤差。將三種節距誤差計算出來後可以進一步利用DIN3962[20]所整理的評估等級做成資料庫,利用此資料庫判斷前面計算出的節距誤差之精度等級。第二部分是做齒形和齒厚誤差的計算。在計算齒形誤差前須先將理論齒形及擬合齒形的節圓點重合,再利用偏移過後的擬合點及對應的理論點作法向上的誤差計算,齒厚誤差則是將理論之齒厚與擬合齒形之齒厚相減而得。利用建立之方法評估市售產品之精度,可做為決定擺線齒輪製造公差依據。


As factory production gradually evolves toward automation, robotic arm replacement is the current trend. Because the mechanical arm joint output is large, it is necessary to use a small volume and high-speed ratio precision reducer to increase the torque. Therefore, cycloidal gears with high gear ratio, small size, lightweight and low noise are often used in robot arms. The purpose of this paper is to develop the accuracy evaluation method of cycloidal gear and propose a mathematical model for accuracy evaluation. Firstly, the 2D point data of the tooth profile are imported, and all the measurement points are center-corrected by the conjugate gradient method, advance and retreat method and the golden section method in the one-dimensional search method. After that, using the B-spline curve fitting method to fit the measurement points, to ensure the fitting curve, the fitting error will be further calculated. After confirming the condition of the fitting error, the pitch radius is used to find the pitch points of the left and right tooth. The content of the evaluation of cycloidal gear in this paper is mainly divided into two parts. The first part is the evaluation of pitch error. The pitch error of the cycloidal gear can be evaluated using the found pitch points and the calculations defined by DIN. There are three calculation items for the pitch error evaluation according to DIN 3960[19], including single pitch error, accumulated pitch error, and run out. After calculating these pitch errors, the database can be further used to make a database using the evaluation level compiled by DIN3962 [20], and the database can be used to judge the accuracy level of the pitch errors. The second part is the calculation of the tooth profile and tooth thickness error. Before calculating the tooth shape error, the theoretical tooth profile and the pitch point of the fitting tooth profile must be coincident, and then the error of the fitting point and the corresponding theoretical point are calculated. The tooth thickness is subtracted from the fitted profile and theoretical one. Using the established method to evaluate the accuracy of commercially available products can be used as a basis for determining the manufacturing tolerance of cycloidal gears.

指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 誌 謝 V 目錄 VI 圖索引 X 表索引 XIII 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 2 1.4 論文架構 3 第2章 擺線齒形數學模式 4 2.1 前言 4 2.2 擺線齒輪齒面數學模式 4 2.3 擺線齒輪精度介紹 7 2.3.1 單齒節距誤差 8 2.3.2 鄰接節距誤差 8 2.3.3 總累積節距誤差 9 2.3.4 徑向跳動誤差 9 2.4 小結 10 第3章 擺線齒輪評估數學模式 11 3.1 前言 11 3.2 評估方法流程圖 11 3.3 節距誤差計算 12 3.3.1 單齒節距誤差(Single Pitch Error) 12 3.3.2 累積節距誤差(Accumulation Pitch Error) 12 3.3.3 偏擺誤差(Run Out) 12 3.4 齒厚及齒形誤差計算 14 3.4.1 齒厚誤差 14 3.4.2 齒形誤差 14 3.5 小結 16 第4章 擺線齒輪量測齒形點擬合數學模式及逆向齒輪參數推導 17 4.1 前言 17 4.2 擺線齒輪齒形點擬合數學模式建立之流程圖 17 4.2.1 匯入量測擺線齒形量測點 18 4.2.2 以最佳化方法校正量測點中心 18 4.2.3 量測點分齒 24 4.2.4 B-spline曲線擬合量測點 25 4.2.5 擬合曲線誤差分析 26 4.2.6 擬合齒形角度對正 27 4.3 逆向量測齒輪參數推導 28 4.3.1 以敏感度矩陣解析擺線齒輪設計參數 28 4.3.2 齒頂齒底修形 29 4.4 小結 30 第5章 納博特斯克擺線齒輪精度評估結果 32 5.1 前言 32 5.2 納博特斯克擺線齒輪精度分析結果 32 5.2.1 第一組量測數據分析 32 5.2.2 第二組量測數據分析 40 5.3 兩組量測數據擺線齒輪節距誤差精度比較 47 5.4 小結 48 第6章 結論與討論 49 6.1 結果與討論 49 6.2 建議與未來展望 50 參考文獻 51

[1] D.W. Botsiber, L. Kingston. 1965. Cycloid speed reducer, Mach. 65–69.
[2] E.P. Pollitt, Some applications of the cycloid in machine design, ASME J. Eng. Ind. (1960) 407–414.
[3] Z.H. Fong, and C.W. Tsay. 2000. Study on the Undercutting of Internal Cycloidal Gear with Small Tooth Difference. Journal of the Chinese Society of Mechanical Engineers. Vol.21. No.4: 359-367.
[4] C.F. Hsieh and Y.W. Hwang,2007. Geometric design using hypotrochoid and nonundercutting conditions for an internal cycloidal gear. journal of Mechanical Design. Vol.129. No.4: 413-420.
[5] J. G. Blanche and Yang, D. C. H.. 1989. Cycloid Drives with Machining Tolerances. ASME J. Mech. Des., 111(3): 337-344.
[6] Shin, J. H., and Kwon, S. M., 2006, “On the Lobe Profile Design in a Cycloid Reducer Using Instant Velocity Center,” Mech. Mach. Theory, 41(5): 596-616.
[7] F. L. Litvin and P. H Feng. 1996, Computerized Design and Generation of Cycloidal Gearings. Mech. Mach. Theory, 31(7): 891-911.
[8] T.S. Lai. 2006. Design and machining of the epicycloid planet gear of cycloid drives. The International Journal of Advanced Manufacturing Technology, Vol.28, No.7-8: 665-670.
[9] M. J. D Powell. 1984. Nonconvex minimization calculations and the conjugate gradient method. In Numerical Analysis, Dundee
[10] R. Fletcher, M. J. D. Powell. 1963. A rapidly convergent descent method for minimization. The Computer Journal, Vol.6, Issue 2: 163-168.
[11] R. Fletcher, C.M. Reeves. 1964. Function minimization by conjugate gradients, The Computer Journal, Volume 7, Issue 2: 149-154.
[12] Mehiddin Al-Baali. 1985. Descent Property and Global Convergence of the Fletcher-Reeves Method. Journal of Numerical Analysis.
[13] Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie and Zabidin Salleh. 2015. An Efficient Hybrid Conjugate Gradient Method with the Strong Wolfe-Powell Line Search. Mathematical Problems in Engineering.
[14] J.Kiefer. 1953. Sequential Minimax Search for a Maximum. Proceedings of the American Mathematical Society.
[15] Jorge Nocedal, Stephen J. Wright. 2006. Numerical Optimization Second Edition. Germany.
[16] Poul Erik Frandsen, Kristian Jonasson, Hans Bruun Nielsen, Ole Tingleff. 1999. Unconstrained Optimization. Location:Technical University of Denmark.
[17] 袁亞湘、孫文瑜。1997。最優化理論與方法。 北京:科學出版社
[18] 陳寶林。 2005。 最優化理論與算法(第2版) 。北京:清華大學出版社
[19] DIN 3960, 1980. Concepts and parameters associated with cylindrical gears and cylindrical gear pairs with involute teeth , Berlin, Germany.
[20] DIN 3962, 1978. Tolerances For Cyclindrical Gear Teeth, Berlin, Germany.
[21] Tianxing Li, Junxiang Zhou, Xiaozhong Deng, Jubo Li, Chunrong Xing, Jianxin Su and Huiliang Wang. 2018. Measurement Science and Technology. Vol.29. No.7.
[22] David F. Rogers, J. Alan Adams. 1976. Mathematical Elements for Computer Graphics. Location: Mcgraw Hill
[23] Les Piegl, Wayne Tiller. 1997. The NURBS Book(2nd ed.). Location:Springer Verlag.

QR CODE