簡易檢索 / 詳目顯示

研究生: Soressa
Soressa Abera Chala
論文名稱: 以鎳基層狀雙氫氧化物開發具雙功能的先進氧電催化劑: 探討 氧析出與還原反應之活性位及機制
Developing Advanced Bifunctional Oxygen Electrocatalysts Using Ni-based Layered Double Hydroxide: Investigating the Active Phases and Mechanisms for Oxygen Evolution and Reduction Reaction
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 牟中原
Mou Chung-Yuan
林昇佃
Shawn Lin
鄧熙聖
Hsisheng Teng
李志甫
Jyh-Fu Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 207
中文關鍵詞: 關鍵詞:氧氣觸媒,空缺,位點活性,位點數量,層狀雙氫氧化物,銀納米粒子,缺陷,分級核殼納米結構,銀納米線,原位光譜-電化學,客體陰離子
外文關鍵詞: Oxygen electrocatalyst, vacancies, site activity, site populations, layered double hydroxides, silver nanoparticles, defects, hierarchical core-shell nanostructure, silver nanowires, in situ spectro-electrochemical, guest anions
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鑑於電化學觸媒在綠色可持續能源生產、儲存和轉換中的核心作用,開發具高催化活性的先進奈米材料以滿足不斷增長的全球能源需求為重要研究領域。然而,開發用於析氧(OER)和氧還原反應(ORR),且具備操作穩定且廉價的雙功能觸媒材料是可再生能源存儲和轉換技術(例如金屬 - 空氣電池和燃料電池)中巨大挑戰之一。由於OER和ORR的反應動力學相當緩慢,即便使用貴金屬催化劑如鉑(用於ORR),氧化釕(用於OER)和氧化銥(用於OER)也是如此。因此,一個關鍵點在於開發具有出色催化活性,低成本和高耐久性的堅固觸媒材料,以同時用於難以進行的ORR/OER。
目前,過渡金屬氫氧化物/氧化物和鎳基層狀雙氫氧化物(LDHs)的電化學觸媒是鹼性電解質中有潛力的新型電極替代品,因為它們具有低成本,蘊藏量豐富,及催化OER / ORR的優秀能力和操作穩定性。在高pH的電解質下。為了加速鎳基層狀氫氧化物觸媒的開發,提高OER/ORR的催化活性,必須了解觸媒在鹼性OER和ORR操作過程中的反應機制,真實的活性位置和一些電位相關的表面性質,這些對於新型電化學觸媒的設計非常重要。
本論文旨在開發耐久、廉價及高效的雙功能電化學觸媒。在室溫鹼性條件下操作,利用臨場光譜電化學技術研究OER過程中的繼志,活性位點和表面性質。因此,開發了一類新的鎳基LDHs電催化劑(NiRu-LDHs和NiMn-LDHs奈米片),並與導電載體(銀奈米粒子(Ag奈米粒子)和銀奈米線(Ag NWs))結合,藉由修飾作用和核-殼結構之策略製備具有OER和ORR的雙功能電催化劑。這種方法對於下一代可逆氧電極的設計有很大益處,其涉及將較便宜的單功能OER和ORR電催化劑組合到一個混合系統中。
第一種方法(第4章)研究“銀奈米粒子修飾NiRu層狀雙氫氧化物奈米片進行氧氣析出和還原反應。這項工作的重點是新型電催化劑的開發;經由Ag NPs對NiRu-LDH的修飾作用,在鹼性下能有效催化OER和ORR且穩定,並且能區分與整體催化活性相關的位置活性(site activity)和活性位點分布(site population)。Ag NP/NiRu-LDHs上較高的ORR活性主要歸因於Ag位點活性的增加和更多的Ag活性位置數目。增加的Ag位點活性廣泛地來自Ag位點上發生的電荷極化,這弱化Ag位點上的OH吸附,並且LDH的存在有助於從Ag表面除去吸附的OH。此外,這樣的修飾策略增強Ag奈米粒子的分散,並顯著增加可利用的位點數量。Ag和LDH之間的協同作用顯著增強了ORR的催化活性。有趣的是,通過引入Ru和Ag NP,一方面改善LDH的本質上較差的導電性,另一方面通過這樣的設計可使LDH結構紊亂和產生缺陷位置(包括金屬和氧空位),因此調節Ni位點上的固有性質。這反過來又可增強用於OER上的位置活性及位點數量。Ag NP和LDH間的強協同作用分別在ORR和OER的雙功能電催化劑中設計Ag和Ni上的活性位點活性和群體。所製備的Ag NP/NiRu-LDH在鹼性OER和ORR上均顯示出極好的催化活性,其中起始過電位分別為0.21 V和-0.27 V,而OER和ORR之間的過電壓差為0.76 V,並具有出色的耐久性,證明了迄今報導的卓越的雙功能電催化劑。這項工作提供了一種新策略,以改善LDH的內在特性和工程多元化,以增強與電催化劑的整體雙功能活性相關的位點活性和群體。
第二項研究(第5章)為“在導電銀奈米線(Ag NWs)上生長3D NiMn層狀雙氫氧化物(NiMn-LDHs),以核殼結構之概念作為有效的ORR/OER雙功能電催化劑。因此,分層3D結構化的Ag NW@NiMn-LDHs催化劑在鹼性條件下表現出極好的OER / ORR活性。 Ag NW@NiMn-LDHs的突出的雙功能活性主要歸因於LDHs殼的分層3D開孔結構的協同貢獻,改善的電導率和與更易接近的位點群相關的LDH殼的小厚度。此外,Ag核與LDH殼金屬之間的電荷轉移效應,形成較少配位的Ni和Mn位點導致缺陷和變形位點,其強烈調節位點活性的本質活性,從而獲得增強的催化活性。因此,Ag NW@NiMn-LDH混合物在ORR和OER之間表現出0.75V的過電壓差,具有優異的耐久性30小時,證明了迄今為止報導的顯著的雙功能電催化劑。因此,Ag NW@NiMn-LDHs的分層3D架構的概念大大推進了對水電解和氧電催化劑的綜合研究。
本論文的第三種方法(第6章)是研究鹼性OER反應機制,利用臨場光譜電化學技術探測OER過程中NiMn-LDHs和β-Ni(OH)2電催化劑的活性位點和表面性質。鎳基層狀雙氫氧化物(LDHs)材料是高活性且具有成本效益的電催化劑,可用於高效析氧反應,並廣泛用於可持續發電。然而,在OER操作期間,真實活性位置和在Ni基LDH材料表面上發生的過程的機制尚不清楚。藉由臨場拉曼光譜的證據表明,隨著電極電壓的增加,NiMn-LDHs和β-Ni(OH)2中的Ni(OH)2相被氧化成NiOOH物質(對於NiMn-LDHs而言,在1.364 V以上)在實際水氧化之前,β-Ni(OH)2和NiOOH中間物質的1.464 V去質子化並帶電(“活性氧”),因此充當OER的前體。因此,我們提出“活性氧”物種的特性是鎳超氧化物或過氧化物性質。臨場X光吸收光譜提供證據表明,當電極電位增加時,Ni K-edge顯著轉移到更高的能量,表明NiMn-LDH中的Ni(OH)2氧化轉變為NiOOH,陽極氧化後構成催化OER所具備的活性位置。Ni K-edge的臨場EXAFS光譜表明,隨著施加的電極電位隨著新的形成而增加,屬於Ni(OH)2的Ni-O(R = 1.53 Å)和Ni-M(R = 2.73 Å)配位的強度逐漸減小。當電極電位越高時,在1.44 Å和2.42 Å處的峰分別對應於Ni3+周圍的Ni-O和Ni-M的配位數,表明由於Ni(OH)2向NiOOH的氧化轉變而在不同環境中存在形成新結構相。有趣的是,在不同電位下收集的Mn K-edge的臨場XANES光譜幾乎不變,FT-EXAFS的強度和峰位置保持不變,表明在OER過程中Mn位點沒有產生轉變。因此,我們得出結論,儘管在引入Mn時催化活性得到改善,但NiMn-LDHs在該應用上沒有顯示出平均Mn氧化態和配位數的任何變化。然而,NiMn-LDHs的Ni K-edge光譜隨施加電位顯著變化。因此,Ni構成活性中心並且顯然是OER的活性位點,而Mn原子的引入促進OER活性的協同作用。
另外,我們還使用臨場光譜電化學技術結合臨場XRD測量,在OER過程中對客體陰離子對NiMn-LDHs和Ni(OH)2催化劑的活性位點數和位點活性的影響進行了系統研究。反過來用於探測OER過程中的活動位點和結構變化。顯然,在引入客體陰離子(溴化物和氯化物)後,NiMn-LDHs表現出令人難以置信的OER活性,隨著客體陰離子濃度的增加,OER活性逐漸增加。這些觀察結果表明,由於LDHs結構的層間空間的擴展(通過臨場XRD測量證實),活性位點活性源自較少堆積和豐富的暴露的活性邊緣位點,促進了OER活性。與NiMn-LDHs不同,Ni(OH)2/NiOOH的氧化還原轉變和β-Ni(OH)2催化劑的OER活性在引入客體陰離子後受到顯著影響並被抑製到更高的過電位。這些結果表明,由於β-Ni(OH)2在結構上緊密堆積,客體陰離子只有一種與Ni(OH)2相互作用的可能性,並且正在攻擊Ni位點,這推測是OER活性下降的原因。
通過修飾和核殼結構的策略將LDH與導電Ag NP和Ag NW結合在一起,設計具結構無序和缺陷的觸媒,從而在鹼性OER和ORR操作期間增強其導電性、活性及穩定性。所討論的具有高OER活性的NiMn-LDHs催化劑,其臨場光譜電化學表徵表明Ni位點為活性中心,而Mn的存在為促進OER活性的協同作用。儘管目前的研究僅限於研究LDH用於氧電催化的活性位點和表面性質,但這些考慮也預期延伸到其他LDHs催化劑和電化學反應


Developing advanced nanomaterials and catalytically active materials is a substantial area of research to meet the growing global energy demand, given the central role that electrocatalytic reactions play in green sustainable energy generation, storage and conversion. However, development of catalytically active, operationally stable and inexpensive materials for the bifunctional oxygen evolution (OER) and reduction reaction (ORR) is one of the grand challenges in renewable energy storage and conversion technologies such as metal-air batteries and fuel cells due to the sluggish reaction kinetics of OER and ORR even when noble metal catalysts such as platinum with carbon support (Pt/C for ORR), ruthenium oxide (RuO2), and iridium oxide (IrO2) toward OER are applied. Consequently, a critical feature is to develop robust materials that have outstanding catalytic activity, cost-effective and promising durability for the more difficult ORR/OER process.
Currently, transition metal hydroxides/oxides and Ni-based layered double hydroxides (LDHs) electrocatalysts are an interesting alternative to the novel metal-based electrodes in alkaline solutions due to their low cost, abundance, proven ability to catalyze the OER/ORR and operationally stable in high pH values of the electrolytes. To accelerate the development of Ni-based LDHs electrocatalysts with improved catalytic activities for the OER/ORR, it is essential to increase the understanding of the mechanisms, active sites at a fundamental level, and surface properties at relevant potentials during the OER and ORR operation and remains of great importance to the design of new electrocatalysts.
This dissertation aims to develop endurable, inexpensive, and efficient bifunctional electrocatalysts for the OER and ORR operated under alkaline conditions at room temperature; investigate the mechanisms, active sites, and surface properties during the OER process using in situ spectro-electrochemical techniques. Accordingly, new classes of Ni-based LDHs electrocatalysts (NiRu-LDHs and NiMn-LDHs nanosheets) were developed and integrated with conductive supports (silver nanoparticles (Ag NPs) and silver nanowires (Ag NWs)) using decoration action and core-shelling strategies as efficient bifunctional electrocatalysts for OER and ORR. This approaches will have great benefits to design highly active and stable bifunctional electrocatalysts for the next-generation reversible oxygen electrodes involve the combination of less-expensive single-function OER and ORR electrocatalysts into one hybrid system.

The first approach (Chapter 4) investigated in this dissertation “Site activity and population engineering of NiRu-layered double hydroxide nanosheets decorated with conductive silver nanoparticles for oxygen evolution and reduction reaction”. This work focuses on the development of new electrocatalyst; NiRu-LDHs decorated with Ag NPs (Ag NP/NiRu-LDHs) as efficient and stable bifunctional electrocatalyst toward the OER and ORR and intended to distinguish the site activity and site population associated to the overall catalytic activity. The higher ORR activity of Ag NP/NiRu-LDHs was mainly attributed to the increased Ag site activity and accessible Ag site populations. The increased Ag site activity is extensively contributed from the charge polarization occurring on the Ag sites responsible for weakening the adsorption of OH on the Ag sites and the presence of LDHs helps to remove the adsorbed OH from the surface of Ag. Furthermore, the decoration strategy enhances the dispersion of Ag and considerably increased the accessible site populations. These strong synergetic effects between Ag and LDHs significantly enhanced the catalytic activity of the ORR. Interestingly, engineering multiple vacancies (metal and oxygen vacancies) which causes the structural disorder and defects through the introduction of Ru and decorating NiRu-LDHs nanosheets with conductive Ag NPs (improve the intrinsically poor conductivity of LDHs) tunes the intrinsic properties of the Ni sites which in turn enhances the OER site activity and site populations. The strong synergetic effects of silver nanoparticles and metal LDHs engineer the active site activity and populations on both Ag and Ni in the bifunctional electrocatalysts for ORR and OER, respectively. The as-prepared Ag NP/NiRu-LDH shows substantially marvelous catalytic activity toward both OER and ORR features with low onset overpotential of 0.21 V and -0.27 V, respectively, with 0.76 V overvoltage difference between OER and ORR with excellent durability, demonstrating the preeminent bifunctional electrocatalyst reported to date. This work provides a new strategy to improve the intrinsic properties of LDHs and engineering multivacancies to enhance the site activity and populations associated with the overall bifunctional activity of the electrocatalysts.

The second study (Chapter 5) aims to develop “hierarchical 3D NiMn-layered double hydroxide (NiMn-LDHs) shells grown on conductive silver nanowires (Ag NWs) cores as efficient ORR/OER bifunctional electrocatalysts”. As a result, the hierarchical 3D architectured Ag NW@NiMn-LDHs catalysts exhibit superb OER/ORR activities in alkaline condition. The outstanding bifunctional activities of Ag NW@NiMn-LDHs are essentially attributed to the synergistic contributions from the hierarchical 3D open-pores structure of the LDHs shells, improved electrical conductivity and small thickness of the LDHs shells associated to more accessible site populations. Moreover, the charge transferring effect between Ag cores and metals of LDHs shells, the formation of less coordinated Ni and Mn sites causes defective and distorted sites that strongly tune the intrinsic activity of the site activity and hence attaining enhanced catalytic activities. Thus, Ag NW@NiMn-LDH hybrids exhibit 0.75 V overvoltage difference between ORR and OER with excellent durability for 30 h, demonstrating the distinguished bifunctional electrocatalyst reported to date. Thus, the concept of the hierarchical 3D architecture of Ag NW@NiMn-LDHs considerably advances comprehensive research towards water electrolysis and oxygen electrocatalyst.

The third approach (chapter 6) of this dissertation is to investigate the mechanisms, probe the active sites and surface properties of NiMn-LDHs and β-Ni(OH)2 electrocatalysts during the OER operation using in situ spectro-electrochemical techniques. Ni-based layered double hydroxides (LDHs) materials are highly active and cost-effective electrocatalysts that can be potentially used for efficient water oxidation process and extensively used toward sustainable energy generation. However, the mechanisms at a fundamental level, active phases and the processes occurring on the surface of Ni-based LDHs materials during the OER operation are not clearly known. Accordingly, the evidence from in situ Raman features provide that the Ni(OH)2 phases in both NiMn-LDHs and β-Ni(OH)2 get oxidized to NiOOH species as the electrode voltage increasing and NiOOH intermediate species deprotonated and get charged prior to the real water oxidation, suggesting that the formation of “active oxygen” species and hence acts as a precursors for the OER. We therefore propose that the identity of the “active oxygen” species is nickel superoxidic or peroxidic nature. The in situ XANES spectra provides the evidence that the Ni K-edge significantly shifted to higher energy upon the electrode potential increased, suggesting the redox transition of Ni(OH)2 in NiMn-LDHs to NiOOH upon anodization that constitutes the catalytic activity of OER active center. The in situ EXAFS spectra of Ni K-edge indicates that the intensity of both Ni−O (R =1.53 Å) and Ni−M (R =2.73 Å) coordination spheres gradually decreases as the applied electrode potentials increase prior to the OER whereas the formation of new peaks at 1.44 Å and 2.42 Å corresponding to the coordination sphere of Ni−O and Ni−M, suggesting the formation of new phases existing in different environment due to the redox transition of Ni(OH)2 to NiOOH occurs. The intensity of these peaks substantially increased as the voltage of electrode increased. However, the intensity and peak positions of Mn K-edge collected at different potentials are almost similar and remain unchanged, suggesting no transformation of Mn sites during the OER process. We therefore conclude that Ni constitutes the active center and evidently the active site for the OER whereas the introduction of Mn atom promotes synergistically the OER activity. We also present a systematic studies of guest anion effect on the number of active sites and site activity of NiMn-LDHs and Ni(OH)2 catalysts during the OER process using electrochemical, in situ spectro-electrochemical techniques and in situ XRD measurements, which in turn used to probe the active sites and structural change during the OER process. Evidently, the NiMn-LDHs exhibited incredible OER activity after guest anions (bromide and chloride) introduced and the OER activity gradually increased as the concentration of guest anions increased. These observations suggest that the active site activity originated from the less-stacking and plentiful exposed active edge sites due to the expansion of interlayer spaces of LDHs structure (confirmed by the in situ XRD measurement) promotes the OER activity. Unlike NiMn-LDHs, both the redox transition of Ni(OH)2/NiOOH and the OER activity of β-Ni(OH)2 catalyst is significantly affected after guest anions introduced and suppressed to higher overpotential. These results suggest that since β-Ni(OH)2 is structurally close-packed, the guest anions have only one possibility to interact with Ni(OH)2 and that is attacking the Ni sites which certainly accounts for the declined OER activity.

In general, integrating LDHs with conductive Ag NPs and Ag NWs through decoration and core-shelling strategies engineers multiple vacancies which cause the structural disorder and defects essentially enhances bifunctional properties of the hybrids, conductivity, stability during OER and ORR operation. The discussed in situ spectro-electrochemical characterization of NiMn-LDHs catalysts with high OER activity demonstrates that the Ni sites constitute the active center and the presence of Mn atom promotes synergistically the OER activity. Although the recent studies are limited to investigate the active sites and surface properties of LDHs for oxygen electrocatalysis, these considerations are also anticipated to extend to other LDHs catalysts and electrochemical reactions.

Abstract viii Acknowledgment xiv Table of Contents xvi List of Figures xx List of Tables xxiv List of Schemes xxv List of Symbols xxvi 1. Introduction 1 1.1. Mechanisms and activity descriptors of oxygen electrocatalysts 5 1.2. Challenges and current issues in oxygen electrode catalysts Activity and cost issue ……………………………………………………………………………………………..11 1.2.1. Stability and durability issue 12 1.2.2. Conductivity Effects 13 1.2.3. The active sites and mechanisms issue 14 1.3. Motivation of this study 15 2. Recent advances of Ni-based layered double hydroxides (LDHs) as efficient oxygen electrocatalyst 19 2.1. The critical issues with LDHs catalysts 24 2.2. The approaches used to address the critical issues of LDHs electrocatalysts 25 2.3. Investigating the active sites and reaction mechanisms of LDH-based electrocatalysts 27 2.4. Correlation of active sites and electrocatalytic properties 36 2.5. Fundamental parameters used in OER/ORR test 39 2.5.1. Onset potential 39 2.5.2. Current density 40 2.5.3. Tafel slope 40 2.5.4. Number of electron transfer and HO2− Percentage 41 2.5.5. Turnover Frequency (TOF) 41 2.5.6. Overvoltage difference/potential gap (∆E) 42 2.6. Fundamental approaches of tuning the bifunctional OER/ORR activity of LDH materials. 42 2.6.1. Engineering phase and crystal structure 43 2.6.2. Engineering defects and structural disorder 44 2.6.3. Engineering morphology and structure 46 2.6.4. Ultrathin nanosheets 46 2.6.5. Hierarchical Nanostructures 48 2.6.6. Cation doping into LDH materials 50 2.6.7. Tuning the anion and spacing in the interlayer 51 2.7. Ag-based electrocatalysts as ORR active and catalyst support. 53 2.8. Objective of the Thesis 55 3. Experimental Section and Characterization Techniques 58 3.1. Chemicals and reagents 58 3.2. Experimental methods 59 3.2.1. Synthesis of 2D NiRu-LDHs nanosheets precursor phase 59 3.2.2. Synthesis of nickel hydroxide (Ni(OH)2) 59 3.2.3. Synthesis of silver nanoparticles (Ag NPs) 60 3.2.4. Synthesis of NiRu-LDHs nanosheets decorated with Ag NPs (Ag NP/ NiRu-LDHs)…………………………………………………………………………………...60 3.2.5. Synthesis of silver nanowires (Ag NWs) 61 3.2.6. Synthesis of 2D NiMn-LDHs nanosheets precursor phase 62 3.2.7. Synthesis of hierarchical 3D architectured Ag NW@NiMn-LDHs 62 3.3. Material characterizations techniques 63 3.3.1. Physical characterization techniques 63 3.3.2. Electrochemical measurements and preparation of the working electrode 65 4. Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions 67 4.1. The scope of the study 67 4.2. Material characterizations 68 4.3. Bifunctional Performance of the NiRu-LDHs nanosheets decorated with Ag NPs 85 4.4. Discussion of the enhanced bifunctional performance of Ag NP/NiRu-LDHs 97 4.5. Summary 99 5. Hierarchical 3D Architectured Ag NW@NiMn-Layered Double Hydroxide for Efficient Bifunctional Electrocatalysts of Oxygen Reduction and Oxygen Evolution Reactions 101 5.1. The scope of the study 101 5.2. Material characterizations 102 5.3. The OER/ORR activity of the hierarchical 3D architecture of Ag NW@NiMn-LDHs hybrid……………………………………………………………………………………..117 5.4. Summary 131 6. Investigating the Active Sites and Mechanisms of OER Using In Situ Spectro-electrochemical Techniques; Effect of Guest Anions on the Site Activity and Site Population for NiMn-Layered Double Hydroxides 133 6.1. The scope of this study 133 6.2. The electrochemical characteristics of NiMn-LDHs and β-Ni(OH)2 135 6.3. Analysis of in situ Raman spectra of NiMn-LDHs and Ni(OH)2 catalysts 136 6.4. In Situ X-ray absorption spectroscopy analysis of NiMn-LDHs catalyst during the OER process 142 6.5. Electrochemical features of NiMn-LDHs and Ni(OH)2 in the presence of guest anions. 148 6.6. Summary 156 7. Conclusions and future perspectives 160 7.1. Conclusions 160 7.2. Future perspectives 163 References 166

(1) Park, Y.; McDonald, K. J.; Choi, K.-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chemical Society Reviews 2013, 42 (6), 2321-2337.
(2) Rosen, J.; Hutchings, G. S.; Jiao, F. Ordered Mesoporous Cobalt Oxide as Highly Efficient Oxygen Evolution Catalyst. Journal of the American Chemical Society 2013, 135 (11), 4516-4521.
(3) Han, L.; Dong, S.; Wang, E. Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction. Advanced Materials 2016, 28 (42), 9266-9291.
(4) Qiu, K.; Chai, G.; Jiang, C.; Ling, M.; Tang, J.; Guo, Z. Highly Efficient Oxygen Reduction Catalysts by Rational Synthesis of Nanoconfined Maghemite in a Nitrogen-Doped Graphene Framework. ACS Catalysis 2016, 6 (6), 3558-3568.
(5) Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nature Chemistry 2010, 3, 79.
(6) Jin, H.; Wang, J.; Su, D.; Wei, Z.; Pang, Z.; Wang, Y. In situ Cobalt–Cobalt Oxide/N-Doped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (7), 2688-2694.
(7) Yang, Y.; Fei, H.; Ruan, G.; Li, L.; Wang, G.; Kim, N. D.; Tour, J. M. Carbon-Free Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces 2015, 7 (37), 20607-20611.
(8) Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J.; Guan, M.; Lin, M.-C.; Zhang, B.; Hu, Y.; Wang, D.-Y.; Yang, J.; Pennycook, S. J.; Hwang, B.-J.; Dai, H. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications 2014, 5, 4695.
(9) Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews 2004, 104 (10), 4245-4270.
(10) Cheng, F.; Chen, J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews 2012, 41 (6), 2172-2192.
(11) Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2010, 2 (7), 724-761.
(12) Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental 2005, 56 (1), 9-35.
(13) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society 2013, 135 (45), 16977-16987.
(14) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chemical Reviews 2010, 110 (11), 6446-6473.
(15) Chang, S. H.; Danilovic, N.; Chang, K.-C.; Subbaraman, R.; Paulikas, A. P.; Fong, D. D.; Highland, M. J.; Baldo, P. M.; Stamenkovic, V. R.; Freeland, J. W.; Eastman, J. A.; Markovic, N. M. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nature Communications 2014, 5, 4191.
(16) Chen, D.; Chen, C.; Baiyee, Z. M.; Shao, Z.; Ciucci, F. Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews 2015, 115 (18), 9869-9921.
(17) Zhang, G.; Shao, Z.-G.; Lu, W.; Li, G.; Liu, F.; Yi, B. One-pot synthesis of Ir@Pt nanodendrites as highly active bifunctional electrocatalysts for oxygen reduction and oxygen evolution in acidic medium. Electrochemistry Communications 2012, 22, 145-148.
(18) Elumeeva, K.; Masa, J.; Tietz, F.; Yang, F.; Xia, W.; Muhler, M.; Schuhmann, W. A Simple Approach towards High-Performance Perovskite-Based Bifunctional Oxygen Electrocatalysts. ChemElectroChem 2016, 3 (1), 138-143.
(19) Rincón, R. A.; Masa, J.; Mehrpour, S.; Tietz, F.; Schuhmann, W. Activation of oxygen evolving perovskites for oxygen reduction by functionalization with Fe–Nx/C groups. Chemical Communications 2014, 50 (94), 14760-14762.
(20) Dresp, S.; Luo, F.; Schmack, R.; Kühl, S.; Gliech, M.; Strasser, P. An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy & Environmental Science 2016, 9 (6), 2020-2024.
(21) Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X. Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials 2015, 5 (13), 1500245.
(22) Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeißer, D.; Strasser, P.; Driess, M. Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. Journal of the American Chemical Society 2014, 136 (50), 17530-17536.
(23) Takeguchi, T.; Yamanaka, T.; Takahashi, H.; Watanabe, H.; Kuroki, T.; Nakanishi, H.; Orikasa, Y.; Uchimoto, Y.; Takano, H.; Ohguri, N.; Matsuda, M.; Murota, T.; Uosaki, K.; Ueda, W. Layered Perovskite Oxide: A Reversible Air Electrode for Oxygen Evolution/Reduction in Rechargeable Metal-Air Batteries. Journal of the American Chemical Society 2013, 135 (30), 11125-11130.
(24) Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science 2015, 8 (5), 1404-1427.
(25) Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. NiFe Layered Double Hydroxide Nanoparticles on Co,N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials 2017, 7 (21), 1700467.
(26) Li, P.; Duan, X.; Kuang, Y.; Li, Y.; Zhang, G.; Liu, W.; Sun, X. Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation. Advanced Energy Materials 2018, 8 (15), 1703341.
(27) Gong, M.; Dai, H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research 2015, 8 (1), 23-39.
(28) Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. Journal of Electroanalytical Chemistry 2011, 660 (2), 254-260.
(29) Kanan, M. W.; Nocera, D. G. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co<sup>2+</sup>. Science 2008, 321 (5892), 1072-1075.
(30) Over, H. Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews 2012, 112 (6), 3356-3426.
(31) Kötz, R.; Lewerenz, H. J.; Stucki, S. XPS Studies of Oxygen Evolution on Ru and RuO2 Anodes. Journal of The Electrochemical Society 1983, 130 (4), 825-829.
(32) Stern, L.-A.; Hu, X. Enhanced oxygen evolution activity by NiOx and Ni(OH)2 nanoparticles. Faraday Discussions 2014, 176 (0), 363-379.
(33) Sadiek, I. M.; Mohammad, A. M.; El-Shakre, M. E.; El-Deab, M. S. Electrocatalytic activity of nickel oxide nanoparticles-modified electrodes: Optimization of the loading level and operating pH towards the oxygen evolution reaction. International Journal of Hydrogen Energy 2012, 37 (1), 68-77.
(34) Dutta, A.; Mutyala, S.; Samantara, A. K.; Bera, S.; Jena, B. K.; Pradhan, N. Synergistic Effect of Inactive Iron Oxide Core on Active Nickel Phosphide Shell for Significant Enhancement in Oxygen Evolution Reaction Activity. ACS Energy Letters 2018, 3 (1), 141-148.
(35) Bau, J. A.; Luber, E. J.; Buriak, J. M. Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase. ACS Applied Materials & Interfaces 2015, 7 (35), 19755-19763.
(36) Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society 2014, 136 (19), 7077-7084.
(37) Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society 2014, 136 (18), 6744-6753.
(38) Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S.; Boettcher, S. W. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles. Chemistry of Materials 2015, 27 (22), 7549-7558.
(39) Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society 2013, 135 (23), 8452-8455.
(40) Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. Journal of the American Chemical Society 2013, 135 (33), 12329-12337.
(41) Fan, K.; Chen, H.; Ji, Y.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F.; Luo, Y.; Sun, L. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications 2016, 7, 11981.
(42) Wu, J.; Ren, Z.; Du, S.; Kong, L.; Liu, B.; Xi, W.; Zhu, J.; Fu, H. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Research 2016, 9 (3), 713-725.
(43) Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews 2017, 46 (2), 337-365.
(44) Liu, S.; White, M. G.; Liu, P. Mechanism of Oxygen Reduction Reaction on Pt(111) in Alkaline Solution: Importance of Chemisorbed Water on Surface. The Journal of Physical Chemistry C 2016, 120 (28), 15288-15298.
(45) Wang, D.-W.; Su, D. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy & Environmental Science 2014, 7 (2), 576-591.
(46) Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis 2015, 5 (8), 4643-4667.
(47) Yang, H. B.; Miao, J.; Hung, S.-F.; Chen, J.; Tao, H. B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. M.; Dai, L.; Liu, B. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances 2016, 2 (4).
(48) An, L.; Li, Y.; Luo, M.; Yin, J.; Zhao, Y.-Q.; Xu, C.; Cheng, F.; Yang, Y.; Xi, P.; Guo, S. Atomic-Level Coupled Interfaces and Lattice Distortion on CuS/NiS2 Nanocrystals Boost Oxygen Catalysis for Flexible Zn-Air Batteries. Advanced Functional Materials 2017, 27 (42), 1703779.
(49) Fu, G.; Yan, X.; Chen, Y.; Xu, L.; Sun, D.; Lee, J.-M.; Tang, Y. Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles. Advanced Materials 2018, 30 (5), 1704609.
(50) Binninger, T.; Mohamed, R.; Waltar, K.; Fabbri, E.; Levecque, P.; Kötz, R.; Schmidt, T. J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Scientific Reports 2015, 5, 12167.
(51) Bockris, J. O. M.; Otagawa, T. The Electrocatalysis of Oxygen Evolution on Perovskites. Journal of The Electrochemical Society 1984, 131 (2), 290-302.
(52) Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Materials Chemistry and Physics 1986, 14 (5), 397-426.
(53) Trotochaud, L.; Boettcher, S. W. Precise oxygen evolution catalysts: Status and opportunities. Scripta Materialia 2014, 74, 25-32.
(54) Somorjai, G. A. Modern Surface Science and Surface Technologies:  An Introduction. Chemical Reviews 1996, 96 (4), 1223-1236.
(55) Wu, Z.-S.; Yang, S.; Sun, Y.; Parvez, K.; Feng, X.; Müllen, K. 3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society 2012, 134 (22), 9082-9085.
(56) Zhang, G.; Li, Y.; Zhou, Y.; Yang, F. NiFe Layered-Double-Hydroxide-Derived NiO-NiFe2O4/Reduced Graphene Oxide Architectures for Enhanced Electrocatalysis of Alkaline Water Splitting. ChemElectroChem 2016, 3 (11), 1927-1936.
(57) Qian, L.; Chen, W.; Liu, M.; Jia, Q.; Xiao, D. One-Step Electrodeposition of S-Doped Cobalt–Nickel Layered Double Hydroxides on Conductive Substrates and their Electrocatalytic Activity in Alkaline Media. ChemElectroChem 2016, 3 (6), 950-958.
(58) Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R.; Davis, R. C.; Bargar, J. R.; Nørskov, J. K.; Nilsson, A.; Bell, A. T. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society 2015, 137 (3), 1305-1313.
(59) Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity. Journal of the American Chemical Society 2017, 139 (33), 11361-11364.
(60) Wang, Q.; O’Hare, D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chemical Reviews 2012, 112 (7), 4124-4155.
(61) Khan, A. I.; O’Hare, D. Intercalation chemistry of layered double hydroxides: recent developments and applications. Journal of Materials Chemistry 2002, 12 (11), 3191-3198.
(62) Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy & Environmental Science 2016, 9 (5), 1734-1743.
(63) Zhao, M.-Q.; Zhang, Q.; Huang, J.-Q.; Wei, F. Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides - Properties, Synthesis, and Applications. Advanced Functional Materials 2012, 22 (4), 675-694.
(64) Shao, M.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical Structures Based on Functionalized Magnetic Cores and Layered Double-Hydroxide Shells: Concept, Controlled Synthesis, and Applications. Chemistry – A European Journal 2013, 19 (13), 4100-4108.
(65) Fan, G.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chemical Society Reviews 2014, 43 (20), 7040-7066.
(66) Feng, J.; He, Y.; Liu, Y.; Du, Y.; Li, D. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects. Chemical Society Reviews 2015, 44 (15), 5291-5319.
(67) Yao, H.-B.; Tan, Z.-H.; Fang, H.-Y.; Yu, S.-H. Artificial Nacre-like Bionanocomposite Films from the Self-Assembly of Chitosan–Montmorillonite Hybrid Building Blocks. Angewandte Chemie International Edition 2010, 49 (52), 10127-10131.
(68) Sels, B.; Vos, D. D.; Buntinx, M.; Pierard, F.; Kirsch-De Mesmaeker, A.; Jacobs, P. Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination. Nature 1999, 400, 855.
(69) Alcântara, A. C. S.; Aranda, P.; Darder, M.; Ruiz-Hitzky, E. Bionanocomposites based on alginate–zein/layered double hydroxide materials as drug delivery systems. Journal of Materials Chemistry 2010, 20 (42), 9495-9504.
(70) Shao, M.; Ning, F.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical Nanowire Arrays Based on ZnO Core−Layered Double Hydroxide Shell for Largely Enhanced Photoelectrochemical Water Splitting. Advanced Functional Materials 2014, 24 (5), 580-586.
(71) Lu, Z.; Xu, W.; Zhu, W.; Yang, Q.; Lei, X.; Liu, J.; Li, Y.; Sun, X.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical Communications 2014, 50 (49), 6479-6482.
(72) Song, F.; Hu, X. Ultrathin Cobalt–Manganese Layered Double Hydroxide Is an Efficient Oxygen Evolution Catalyst. Journal of the American Chemical Society 2014, 136 (47), 16481-16484.
(73) Chen, H.; Hu, L.; Chen, M.; Yan, Y.; Wu, L. Nickel–Cobalt Layered Double Hydroxide Nanosheets for High-performance Supercapacitor Electrode Materials. Advanced Functional Materials 2014, 24 (7), 934-942.
(74) Zhao, J.; Chen, J.; Xu, S.; Shao, M.; Zhang, Q.; Wei, F.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical NiMn Layered Double Hydroxide/Carbon Nanotubes Architecture with Superb Energy Density for Flexible Supercapacitors. Advanced Functional Materials 2014, 24 (20), 2938-2946.
(75) Long, X.; Li, J.; Xiao, S.; Yan, K.; Wang, Z.; Chen, H.; Yang, S. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction. Angewandte Chemie 2014, 126 (29), 7714-7718.
(76) Tang, D.; Liu, J.; Wu, X.; Liu, R.; Han, X.; Han, Y.; Huang, H.; Liu, Y.; Kang, Z. Carbon Quantum Dot/NiFe Layered Double-Hydroxide Composite as a Highly Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces 2014, 6 (10), 7918-7925.
(77) Zhou, D.; Cai, Z.; Lei, X.; Tian, W.; Bi, Y.; Jia, Y.; Han, N.; Gao, T.; Zhang, Q.; Kuang, Y.; Pan, J.; Sun, X.; Duan, X. NiCoFe-Layered Double Hydroxides/N-Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions. Advanced Energy Materials 2018, 8 (9), 1701905.
(78) Allou, N. g. B.; Saikia, P.; Borah, A.; Goswamee, R. L. Hybrid nanocomposites of layered double hydroxides: an update of their biological applications and future prospects. Colloid and Polymer Science 2017, 295 (5), 725-747.
(79) Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Communications 2014, 5, 4477.
(80) Wang, Y.; Zhang, Y.; Liu, Z.; Xie, C.; Feng, S.; Liu, D.; Shao, M.; Wang, S. Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angewandte Chemie International Edition 2017, 56 (21), 5867-5871.
(81) Corrigan, D. A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. Journal of The Electrochemical Society 1987, 134 (2), 377-384.
(82) Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials 2012, 11, 550.
(83) Tang, C.; Wang, H.-F.; Wang, H.-S.; Wei, F.; Zhang, Q. Guest–host modulation of multi-metallic (oxy)hydroxides for superb water oxidation. Journal of Materials Chemistry A 2016, 4 (9), 3210-3216.
(84) Trześniewski, B. J.; Diaz-Morales, O.; Vermaas, D. A.; Longo, A.; Bras, W.; Koper, M. T. M.; Smith, W. A. In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. Journal of the American Chemical Society 2015, 137 (48), 15112-15121.
(85) Wang, D.; Zhou, J.; Hu, Y.; Yang, J.; Han, N.; Li, Y.; Sham, T.-K. In Situ X-ray Absorption Near-Edge Structure Study of Advanced NiFe(OH)x Electrocatalyst on Carbon Paper for Water Oxidation. The Journal of Physical Chemistry C 2015, 119 (34), 19573-19583.
(86) Bates, M. K.; Jia, Q.; Doan, H.; Liang, W.; Mukerjee, S. Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catalysis 2016, 6 (1), 155-161.
(87) Görlin, M.; Ferreira de Araújo, J.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H.; Strasser, P. Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH. Journal of the American Chemical Society 2017, 139 (5), 2070-2082.
(88) Sayeed, M. A.; O'Mullane, A. P. A multifunctional gold doped Co(OH)2 electrocatalyst tailored for water oxidation, oxygen reduction, hydrogen evolution and glucose detection. Journal of Materials Chemistry A 2017, 5 (45), 23776-23784.
(89) Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angewandte Chemie International Edition 2014, 53 (1), 102-121.
(90) Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Communications 2013, 4, 2390.
(91) Wang, J.; Zhong, H.-x.; Qin, Y.-l.; Zhang, X.-b. An Efficient Three-Dimensional Oxygen Evolution Electrode. Angewandte Chemie International Edition 2013, 52 (20), 5248-5253.
(92) Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society 2013, 135 (36), 13521-13530.
(93) Sun, Y.; Liu, Q.; Gao, S.; Cheng, H.; Lei, F.; Sun, Z.; Jiang, Y.; Su, H.; Wei, S.; Xie, Y. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nature Communications 2013, 4, 2899.
(94) Sun, Y.; Gao, S.; Lei, F.; Liu, J.; Liang, L.; Xie, Y. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts. Chemical Science 2014, 5 (10), 3976-3982.
(95) Sun, Y.; Sun, Z.; Gao, S.; Cheng, H.; Liu, Q.; Piao, J.; Yao, T.; Wu, C.; Hu, S.; Wei, S.; Xie, Y. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nature Communications 2012, 3, 1057.
(96) Sun, Y.; Sun, Z.; Gao, S.; Cheng, H.; Liu, Q.; Lei, F.; Wei, S.; Xie, Y. All-Surface-Atomic-Metal Chalcogenide Sheets for High-Efficiency Visible-Light Photoelectrochemical Water Splitting. Advanced Energy Materials 2014, 4 (1), 1300611.
(97) Liang, H.; Meng, F.; Cabán-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. Nano Letters 2015, 15 (2), 1421-1427.
(98) Sun, Y.; Gao, S.; Lei, F.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chemical Society Reviews 2015, 44 (3), 623-636.
(99) Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting. Advanced Materials 2016, 28 (2), 215-230.
(100) Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Water-Plasma-Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation. Advanced Materials 2017, 29 (30), 1701546.
(101) Scholz, J.; Risch, M.; Stoerzinger, K. A.; Wartner, G.; Shao-Horn, Y.; Jooss, C. Rotating Ring–Disk Electrode Study of Oxygen Evolution at a Perovskite Surface: Correlating Activity to Manganese Concentration. The Journal of Physical Chemistry C 2016, 120 (49), 27746-27756.
(102) Wang, J.; Wang, K.; Wang, F.-B.; Xia, X.-H. Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nature Communications 2014, 5, 5285.
(103) Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catalysis 2014, 4 (11), 3957-3971.
(104) Cheng, F.; Su, Y.; Liang, J.; Tao, Z.; Chen, J. MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media. Chemistry of Materials 2010, 22 (3), 898-905.
(105) Huang, Z.-F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.-J. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Advanced Materials 2015, 27 (36), 5309-5327.
(106) Pei, D.-N.; Gong, L.; Zhang, A.-Y.; Zhang, X.; Chen, J.-J.; Mu, Y.; Yu, H.-Q. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nature Communications 2015, 6, 8696.
(107) Liu, P. F.; Yang, S.; Zhang, B.; Yang, H. G. Defect-Rich Ultrathin Cobalt–Iron Layered Double Hydroxide for Electrochemical Overall Water Splitting. ACS Applied Materials & Interfaces 2016, 8 (50), 34474-34481.
(108) Ma, T. Y.; Cao, J. L.; Jaroniec, M.; Qiao, S. Z. Interacting Carbon Nitride and Titanium Carbide Nanosheets for High-Performance Oxygen Evolution. Angewandte Chemie International Edition 2016, 55 (3), 1138-1142.
(109) Wu, Y.; Li, G.-D.; Liu, Y.; Yang, L.; Lian, X.; Asefa, T.; Zou, X. Overall Water Splitting Catalyzed Efficiently by an Ultrathin Nanosheet-Built, Hollow Ni3S2-Based Electrocatalyst. Advanced Functional Materials 2016, 26 (27), 4839-4847.
(110) Yu, L.; Yang, J. F.; Guan, B. Y.; Lu, Y.; Lou, X. W. Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. Angewandte Chemie International Edition 2018, 57 (1), 172-176.
(111) Xiong, X.; Cai, Z.; Zhou, D.; Zhang, G.; Zhang, Q.; Jia, Y.; Duan, X.; Xie, Q.; Lai, S.; Xie, T.; Li, Y.; Sun, X.; Duan, X. A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide. Science China Materials 2018, 61 (7), 939-947.
(112) Zhang, W.; Zhou, K. Ultrathin Two-Dimensional Nanostructured Materials for Highly Efficient Water Oxidation. Small 2017, 13 (32), 1700806.
(113) Fang, M.; Dong, G.; Wei, R.; Ho, J. C. Hierarchical Nanostructures: Design for Sustainable Water Splitting. Advanced Energy Materials 2017, 7 (23), 1700559.
(114) Tang, C.; Gan, L.; Zhang, R.; Lu, W.; Jiang, X.; Asiri, A. M.; Sun, X.; Wang, J.; Chen, L. Ternary FexCo1–xP Nanowire Array as a Robust Hydrogen Evolution Reaction Electrocatalyst with Pt-like Activity: Experimental and Theoretical Insight. Nano Letters 2016, 16 (10), 6617-6621.
(115) Zhang, C.; Shao, M.; Zhou, L.; Li, Z.; Xiao, K.; Wei, M. Hierarchical NiFe Layered Double Hydroxide Hollow Microspheres with Highly-Efficient Behavior toward Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (49), 33697-33703.
(116) Liang, H.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications. ACS Energy Letters 2017, 2 (5), 1035-1042.
(117) Yu, L.; Zhou, H.; Sun, J.; Qin, F.; Yu, F.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy & Environmental Science 2017, 10 (8), 1820-1827.
(118) Long, X.; Xiao, S.; Wang, Z.; Zheng, X.; Yang, S. Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction. Chemical Communications 2015, 51 (6), 1120-1123.
(119) Liu, H.; Wang, Y.; Lu, X.; Hu, Y.; Zhu, G.; Chen, R.; Ma, L.; Zhu, H.; Tie, Z.; Liu, J.; Jin, Z. The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy 2017, 35, 350-357.
(120) Lu, Z.; Qian, L.; Tian, Y.; Li, Y.; Sun, X.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chemical Communications 2016, 52 (5), 908-911.
(121) Tang, C.; Zhang, R.; Lu, W.; He, L.; Jiang, X.; Asiri, A. M.; Sun, X. Fe-Doped CoP Nanoarray: A Monolithic Multifunctional Catalyst for Highly Efficient Hydrogen Generation. Advanced Materials 2017, 29 (2), 1602441.
(122) Lado, J. L.; Wang, X.; Paz, E.; Carbó-Argibay, E.; Guldris, N.; Rodríguez-Abreu, C.; Liu, L.; Kovnir, K.; Kolen’ko, Y. V. Design and Synthesis of Highly Active Al–Ni–P Foam Electrode for Hydrogen Evolution Reaction. ACS Catalysis 2015, 5 (11), 6503-6508.
(123) Luo, M.; Cai, Z.; Wang, C.; Bi, Y.; Qian, L.; Hao, Y.; Li, L.; Kuang, Y.; Li, Y.; Lei, X.; Huo, Z.; Liu, W.; Wang, H.; Sun, X.; Duan, X. Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Research 2017, 10 (5), 1732-1739.
(124) Han, N.; Zhao, F.; Li, Y. Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. Journal of Materials Chemistry A 2015, 3 (31), 16348-16353.
(125) Singh, P.; Buttry, D. A. Comparison of Oxygen Reduction Reaction at Silver Nanoparticles and Polycrystalline Silver Electrodes in Alkaline Solution. The Journal of Physical Chemistry C 2012, 116 (19), 10656-10663.
(126) Blizanac, B. B.; Ross, P. N.; Marković, N. M. Oxygen Reduction on Silver Low-Index Single-Crystal Surfaces in Alkaline Solution:  Rotating Ring DiskAg(hkl) Studies. The Journal of Physical Chemistry B 2006, 110 (10), 4735-4741.
(127) Blizanac, B. B.; Ross, P. N.; Markovic, N. M. Oxygen electroreduction on Ag(111): The pH effect. Electrochimica Acta 2007, 52 (6), 2264-2271.
(128) Alia, S. M.; Duong, K.; Liu, T.; Jensen, K.; Yan, Y. Supportless Silver Nanowires as Oxygen Reduction Reaction Catalysts for Hydroxide-Exchange Membrane Fuel Cells. ChemSusChem 2012, 5 (8), 1619-1624.
(129) Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature communications 2014, 5.
(130) Iravani, S.; Korbekandi, H.; Mirmohammadi, S.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences 2014, 9 (6), 385.
(131) Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M.; Wang, D. Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan. Biosensors and Bioelectronics 2013, 42, 198-206.
(132) El-Nour, K. M. A.; Eftaiha, A. a.; Al-Warthan, A.; Ammar, R. A. Synthesis and applications of silver nanoparticles. Arabian journal of chemistry 2010, 3 (3), 135-140.
(133) Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S. W.; Hanifehpour, Y.; Nejati-Koshki, K. Silver nanoparticles: synthesis methods, bio-applications and properties. Critical reviews in microbiology 2016, 42 (2), 173-180.
(134) Khan, Z.; Al-Thabaiti, S. A.; Obaid, A. Y.; Al-Youbi, A. Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids and Surfaces B: Biointerfaces 2011, 82 (2), 513-517.
(135) Ballarin, B.; Mignani, A.; Scavetta, E.; Giorgetti, M.; Tonelli, D.; Boanini, E.; Mousty, C.; Prevot, V. Synthesis route to supported gold nanoparticle layered double hydroxides as efficient catalysts in the electrooxidation of methanol. Langmuir 2012, 28 (42), 15065-15074.
(136) Mignani, A.; Ballarin, B.; Giorgetti, M.; Scavetta, E.; Tonelli, D.; Boanini, E.; Prevot, V.; Mousty, C.; Iadecola, A. Heterostructure of Au Nanoparticles NiAl Layered Double Hydroxide: Electrosynthesis, Characterization, and Electrocatalytic Properties. The Journal of Physical Chemistry C 2013, 117 (31), 16221-16230.
(137) Varade, D.; Haraguchi, K. Efficient approach for preparing gold nanoparticles in layered double hydroxide: synthesis, structure, and properties. Journal of Materials Chemistry 2012, 22 (34), 17649-17655.
(138) Chen, J.; Bi, H.; Sun, S.; Tang, Y.; Zhao, W.; Lin, T.; Wan, D.; Huang, F.; Zhou, X.; Xie, X.; Jiang, M. Highly Conductive and Flexible Paper of 1D Silver-Nanowire-Doped Graphene. ACS Applied Materials & Interfaces 2013, 5 (4), 1408-1413.
(139) Sumboja, A.; Chen, J.; Zong, Y.; Lee, P. S.; Liu, Z. NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn-air batteries. Nanoscale 2017, 9 (2), 774-780.
(140) Ibrahim, K. B.; Su, W.-N.; Tsai, M.-C.; Chala, S. A.; Kahsay, A. W.; Yeh, M.-H.; Chen, H.-M.; Duma, A. D.; Dai, H.; Hwang, B.-J. Robust and conductive Magnéli Phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst. Nano Energy 2018, 47, 309-315.
(141) Ruano‐Casero, R.; Pérez‐Bernal, M.; Rives, V. Preparation and properties of nickel and iron oxides obtained by calcination of layered double hydroxides. Zeitschrift für anorganische und allgemeine Chemie 2005, 631 (11), 2142-2150.
(142) Zhou, L.-J.; Huang, X.; Chen, H.; Jin, P.; Li, G.-D.; Zou, X. A high surface area flower-like Ni–Fe layered double hydroxide for electrocatalytic water oxidation reaction. Dalton Transactions 2015, 44 (25), 11592-11600.
(143) Lo, Y. L.; Hwang, B. J. In Situ Raman Studies on Cathodically Deposited Nickel Hydroxide Films and Electroless Ni−P Electrodes in 1 M KOH Solution. Langmuir 1998, 14 (4), 944-950.
(144) Trześniewski, B. J.; Diaz-Morales, O.; Vermaas, D. A.; Longo, A.; Bras, W.; Koper, M. T.; Smith, W. A. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity. Journal of the American Chemical Society 2015, 137 (48), 15112-15121.
(145) Park, S.-A.; Lee, E.-K.; Song, H.; Kim, Y.-T. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media. Scientific reports 2015, 5.
(146) Yuan, L.; Jiang, L.; Liu, J.; Xia, Z.; Wang, S.; Sun, G. Facile synthesis of silver nanoparticles supported on three dimensional graphene oxide/carbon black composite and its application for oxygen reduction reaction. Electrochimica Acta 2014, 135, 168-174.
(147) Tang, C.; Wang, H.-S.; Wang, H.-F.; Zhang, Q.; Tian, G.-L.; Nie, J.-Q.; Wei, F. Spatially Confined Hybridization of Nanometer-Sized NiFe Hydroxides into Nitrogen-Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. Advanced Materials 2015, 27 (30), 4516-4522.
(148) Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis 2015, 47 (11), 1072-1079.
(149) Wang, H.-Y.; Hsu, Y.-Y.; Chen, R.; Chan, T.-S.; Chen, H. M.; Liu, B. Ni3+-Induced Formation of Active NiOOH on the Spinel Ni–Co Oxide Surface for Efficient Oxygen Evolution Reaction. Advanced Energy Materials 2015, 5 (10), 1500091.
(150) Nayak, S.; Parida, K. M. Dynamics of Charge-Transfer Behavior in a Plasmon-Induced Quasi-Type-II p–n/n–n Dual Heterojunction in Ag@Ag3PO4/g-C3N4/NiFe LDH Nanocomposites for Photocatalytic Cr(VI) Reduction and Phenol Oxidation. ACS Omega 2018, 3 (7), 7324-7343.
(151) Zhang, L.; Wang, S.; Lu, C. Detection of Oxygen Vacancies in Oxides by Defect-Dependent Cataluminescence. Analytical Chemistry 2015, 87 (14), 7313-7320.
(152) Tu, Y.; Chen, S.; Li, X.; Gorbaciova, J.; Gillin, W. P.; Krause, S.; Briscoe, J. Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour. Journal of Materials Chemistry C 2018, 6 (7), 1815-1821.
(153) El Maliki, H.; Bernède, J. C.; Marsillac, S.; Pinel, J.; Castel, X.; Pouzet, J. Study of the influence of annealing on the properties of CBD-CdS thin films. Applied Surface Science 2003, 205 (1), 65-79.
(154) Cheng, Z.; Huang, C.; Song, L.; Wang, Y.; Ding, Y.; Xu, J.; Zhang, Y. Electrospinning synthesis of CdIn2O4 nanofibers for ethanol detection. Sensors and Actuators B: Chemical 2015, 209, 530-535.
(155) Wang, S.; Nai, J.; Yang, S.; Guo, L. Synthesis of Amorphous Ni−Zn Double Hydroxide Nanocages with Excellent Electrocatalytic Activity toward Oxygen Evolution Reaction. ChemNanoMat 2015, 1 (5), 324-330.
(156) Okamoto, K.; Miyawaki, J.; Nagai, K.; Matsumura, D.; Nojima, A.; Yokoyama, T.; Kondoh, H.; Ohta, T. Structural Study on Highly Oxidized States of a Water Oxidation Complex [RuIII(bpy)2(H2O)]2(μ-O)4+ by Ruthenium K-Edge X-ray Absorption Fine Structure Spectroscopy. Inorganic Chemistry 2003, 42 (26), 8682-8689.
(157) Guo, J.; Hsu, A.; Chu, D.; Chen, R. Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. The Journal of Physical Chemistry C 2010, 114 (10), 4324-4330.
(158) Zhou, R.; Zheng, Y.; Jaroniec, M.; Qiao, S.-Z. Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catalysis 2016, 6 (7), 4720-4728.
(159) Gu, X.-K.; Samira, S.; Nikolla, E. Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides. Chemistry of Materials 2018, 30 (9), 2860-2872.
(160) Yang, M.-Q.; Wang, J.; Wu, H.; Ho, G. W. Noble Metal-Free Nanocatalysts with Vacancies for Electrochemical Water Splitting. Small 2018, 14 (15), 1703323.
(161) Park, S.-A.; Lee, E.-K.; Song, H.; Kim, Y.-T. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media. Scientific Reports 2015, 5, 13552.
(162) Cheng, Y.; Dou, S.; Veder, J.-P.; Wang, S.; Saunders, M.; Jiang, S. P. Efficient and Durable Bifunctional Oxygen Catalysts Based on NiFeO@ MnO x Core–Shell Structures for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces 2017, 9 (9), 8121-8133.
(163) Liang, H.; Meng, F.; Cabán-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Letters 2015, 15 (2), 1421-1427.
(164) Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. Journal of the American Chemical Society 2010, 132 (39), 13612-13614.
(165) Yang, F.; Sliozberg, K.; Sinev, I.; Antoni, H.; Bähr, A.; Ollegott, K.; Xia, W.; Masa, J.; Grünert, W.; Cuenya, B. R. Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction. ChemSusChem 2017, 10 (1), 156-165.
(166) Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X. Trinary Layered Double Hydroxides as High‐Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials 2015, 5 (13).
(167) Fan, K.; Chen, H.; Ji, Y.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F.; Luo, Y. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature communications 2016, 7.
(168) Mao, S.; Wen, Z.; Huang, T.; Hou, Y.; Chen, J. High-performance bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy & Environmental Science 2014, 7 (2), 609-616.
(169) Wang, Y.; Zhang, Y.; Liu, Z.; Xie, C.; Feng, S.; Liu, D.; Shao, M.; Wang, S. Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angewandte Chemie 2017, 129 (21), 5961-5965.
(170) Elmoubarki, R.; Mahjoubi, F. Z.; Elhalil, A.; Tounsadi, H.; Abdennouri, M.; Sadiq, M. h.; Qourzal, S.; Zouhri, A.; Barka, N. Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal. Journal of Materials Research and Technology 2017, 6 (3), 271-283.
(171) Šurca, A.; Orel, B.; Pihlar, B.; Bukovec, P. Optical, spectroelectrochemical and structural properties of sol-gel derived Ni-oxide electrochromic film. Journal of Electroanalytical Chemistry 1996, 408 (1), 83-100.
(172) Julien, C. M.; Massot, M.; Poinsignon, C. Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2004, 60 (3), 689-700.
(173) Nam, K.-W.; Kim, M. G.; Kim, K.-B. In Situ Mn K-edge X-ray Absorption Spectroscopy Studies of Electrodeposited Manganese Oxide Films for Electrochemical Capacitors. The Journal of Physical Chemistry C 2007, 111 (2), 749-758.
(174) Cunha, V. R. R.; Petersen, P. A. D.; Gonçalves, M. B.; Petrilli, H. M.; Taviot-Gueho, C.; Leroux, F.; Temperini, M. L. A.; Constantino, V. R. L. Structural, Spectroscopic (NMR, IR, and Raman), and DFT Investigation of the Self-Assembled Nanostructure of Pravastatin-LDH (Layered Double Hydroxides) Systems. Chemistry of Materials 2012, 24 (8), 1415-1425.
(175) Wu, S.; Hui, K. S.; Hui, K. N. One-Dimensional Core–Shell Architecture Composed of Silver Nanowire@Hierarchical Nickel–Aluminum Layered Double Hydroxide Nanosheet as Advanced Electrode Materials for Pseudocapacitor. The Journal of Physical Chemistry C 2015, 119 (41), 23358-23365.
(176) Zhou, D.; Cai, Z.; Lei, X.; Tian, W.; Bi, Y.; Jia, Y.; Han, N.; Gao, T.; Zhang, Q.; Kuang, Y.; Pan, J.; Sun, X.; Duan, X. NiCoFe-Layered Double Hydroxides/N-Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions. Advanced Energy Materials, 1701905-n/a.
(177) Roemelt, M.; Beckwith, M. A.; Duboc, C.; Collomb, M.-N.; Neese, F.; DeBeer, S. Manganese K-Edge X-Ray Absorption Spectroscopy as a Probe of the Metal–Ligand Interactions in Coordination Compounds. Inorganic Chemistry 2012, 51 (1), 680-687.
(178) Serov, A.; Andersen, N. I.; Roy, A. J.; Matanovic, I.; Artyushkova, K.; Atanassov, P. CuCo2O4 ORR/OER Bi-Functional Catalyst: Influence of Synthetic Approach on Performance. Journal of The Electrochemical Society 2015, 162 (4), F449-F454.
(179) Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X. Trinary Layered Double Hydroxides as High‐Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials 2015, 5 (13), 1500245.
(180) Li, T.; Lu, Y.; Zhao, S.; Gao, Z.-D.; Song, Y.-Y. Co3O4-doped Co/CoFe nanoparticles encapsulated in carbon shells as bifunctional electrocatalysts for rechargeable Zn-Air batteries. Journal of Materials Chemistry A 2018, 6 (8), 3730-3737.
(181) Song, W.; Ren, Z.; Chen, S.-Y.; Meng, Y.; Biswas, S.; Nandi, P.; Elsen, H. A.; Gao, P.-X.; Suib, S. L. Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (32), 20802-20813.
(182) Lambert, T. N.; Vigil, J. A.; White, S. E.; Davis, D. J.; Limmer, S. J.; Burton, P. D.; Coker, E. N.; Beechem, T. E.; Brumbach, M. T. Electrodeposited NixCo3-xO4 nanostructured films as bifunctional oxygen electrocatalysts. Chemical Communications 2015, 51 (46), 9511-9514.
(183) Liu, Y.; Jiang, H.; Zhu, Y.; Yang, X.; Li, C. Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. Journal of Materials Chemistry A 2016, 4 (5), 1694-1701.
(184) Zhan, Y.; Du, G.; Yang, S.; Xu, C.; Lu, M.; Liu, Z.; Lee, J. Y. Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution. ACS Applied Materials & Interfaces 2015, 7 (23), 12930-12936.
(185) Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X. Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials 2015, 5 (13), 1500245-n/a.
(186) Su, Y.; Zhu, Y.; Jiang, H.; Shen, J.; Yang, X.; Zou, W.; Chen, J.; Li, C. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 2014, 6 (24), 15080-15089.
(187) Zhao, Y.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Efficient Bifunctional Fe/C/N Electrocatalysts for Oxygen Reduction and Evolution Reaction. The Journal of Physical Chemistry C 2015, 119 (5), 2583-2588.
(188) Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chemical Science 2016, 7 (4), 2639-2645.
(189) Yang, W.; Zhu, K.; Zhu, X. Application of in situ techniques for the characterization of NiFe based oxygen evolution reaction (OER) electrocatalysts. Angewandte Chemie 0 (ja).
(190) De Mishima, B. A. L.; Ohtsuka, T.; Sato, N. In-situ raman spectroscopy of manganese dioxide during the discharge process. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988, 243 (1), 219-223.
(191) Bernard, M. C.; Bernard, P.; Keddam, M.; Senyarich, S.; Takenouti, H. Characterisation of new nickel hydroxides during the transformation of α Ni(OH)2 to β Ni(OH)2 by ageing. Electrochimica Acta 1996, 41 (1), 91-93.
(192) Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nature Communications 2013, 4, 1894.
(193) Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst. Journal of the American Chemical Society 2012, 134 (15), 6801-6809.
(194) Van der Ven, A.; Morgan, D.; Meng, Y. S.; Ceder, G. Phase Stability of Nickel Hydroxides and Oxyhydroxides. Journal of The Electrochemical Society 2006, 153 (2), A210-A215.
(195) Xu, Y.; Hao, Y.; Zhang, G.; Lu, Z.; Han, S.; Li, Y.; Sun, X. Room-temperature synthetic NiFe layered double hydroxide with different anions intercalation as an excellent oxygen evolution catalyst. RSC Advances 2015, 5 (68), 55131-55135.

無法下載圖示 全文公開日期 2024/01/17 (校內網路)
全文公開日期 2029/01/17 (校外網路)
全文公開日期 2029/01/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE