簡易檢索 / 詳目顯示

研究生: 陳美汝
Mei-Ju Chen
論文名稱: 改質木薯澱粉/PE複合材之研究
Study of the Modified Cassava Starch/PE Composite Materials
指導教授: 蘇舜恭
Shuenn-kung Su
口試委員: 陳建光
Jem-Kun Chen
邱士軒
Shih-Hsuan Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 124
中文關鍵詞: 聚乙烯吡咯烷酮二氧化矽木薯澱粉聚乙烯
外文關鍵詞: Polyvinylpyrrolidone, SiO2, Cassava starch, Polyethylene
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗分成兩個研究主軸,第一部分是使用丙三醇塑化及醋酸降解,再將PVP/SiO2複合溶膠加入擬熱可塑性木薯澱粉,製成PVP/SiO2改質擬熱可塑性木薯澱粉複合材;第二部分是將聚乙烯混練於第一部分之最佳比例,製備出擬熱可塑性木薯澱粉/PE複合材薄膜。研究結果發現:經TGA測試得知,隨著PVP含量增加,裂解溫度由319.2℃上升至349.7℃;隨著SiO2含量增加,裂解溫度由319.2℃上升至340.1℃。機械性質,以GTSt-P35S8為最佳,強度為5.2 MPa,增強288%;實驗第二部分,隨著擬熱可塑性木薯澱粉增加,複合材之拉伸強度上升,另改質木薯澱粉/PE重量比為70/30強度9.1 MPa、80/20強度10 .2 MPa,且具有較佳成膜性,因此後續加工可採用此為比例。土壤降解分析結果可知,本研究製備樣本複合材70/30、 80/20及90/10經過60天測試可達10.45%、13.97%及13.05%,具生物可分解之效能。因此有利於工業化生產製造與應用。


    This study is divided into two parts. The first one is using glycerol to plastify and acetic acid to degrading. Adding PVP/SiO2 into pseudo-thermoplastic cassava starch complex soliquid to formed PVP/SiO2 pseudo-thermoplastic cassava starch. The second part is compounding the best ratio of polyethylene and the first part to formed pseudo-thermoplastic cassava starch /PE films. The result showed that after TGA testing, we knew that along with the PVP content increasing, the cracking temperature rose from 319.2 °C to 349.7 °C. In addition, when the SiO2 content increased, the cracking temperature also rose from 319.2 °C to 340.1 °C. The GTSt-P35S8 had the best of mechanical property, the strength increased 288% to 5.2 MPa. In the second part, along with the increasing of pseudo-thermoplastic cassava starch, the tensile strength of the composite also rose. When the weight ratio of the modified cassava starch was 70/30, the strength was 9.1 MPa, when the weight ratio was 80/20, the strength was 10.2 MPa. Moreover, it has a better film formation so follow up processing can adopt these ratios. According to the result of soil degradation analysis, the biodegradable of the specimens composites in this study can achieved 10.45%, 13.97% and 13.05% after 60 days testing. Thus, it is beneficial for the production and application of industry.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 I 表目錄 IV 第1章 緒論 1 1.1研究背景 1 1.1.1塑膠廢棄物的處理方法 2 1.2文獻回顧 4 1.2.1可降解塑膠的介紹 4 1.2.2可降解塑膠的種類 4 1.2.3生物分解性塑膠之分解過程 7 1.2.4降解測定規範 8 1.2.5澱粉基生物降解塑膠的研究現況 11 1.3研究動機 19 1.4 研究內容 20 1.5論文架構與研究流程 21 第2章 材料特性與合成原理 22 2.1澱粉 22 2.1.1 澱粉的成分與結構 22 2.1.2 澱粉的結晶 24 2.1.3 澱粉的特性 26 2.1.4 澱粉之選擇 29 2.2 聚乙烯吡咯烷酮 (PVP) 30 2.3 二氧化矽 (SiO2) 31 2.4 聚乙烯 (PE) 32 2.5 微波化學 33 2.5.1 微波在澱粉改質中的原理 35 2.5.2 微波在澱粉改質中的應用 36 2.6 高分子摻混原理 37 2.7 澱粉塑化機理 39 2.7.1 增塑劑的選擇 41 2.7.2 酸水解的選擇 42 第3章 實驗 43 3.1 實驗材料 43 3.2 分析儀器與測試方法 45 3.3 實驗流程 51 3.3.1 PVP/SiO2改質擬熱可塑性木薯澱粉 51 3.3.2 PVP/SiO2改質擬熱可塑性木薯澱粉/PE複合材 53 3.4 原料製備 54 3.4.1 PVP/SiO2改質擬熱可塑性木薯澱粉 54 3.4.2 PVP/SiO2改質擬熱可塑性木薯澱粉/PE複合材 56 3.5實驗分析樣本製備 57 3.5.1薄膜樣本製備 57 3.5.2 拉伸試驗樣本製備 58 第4章 結果與討論 59 第一部分 PVP / SiO2改質擬熱可塑性木薯澱粉 59 4.1結構鑑定 59 4.1.1 傅立葉變換紅外光譜分析(FTIR) 59 4.1.3掃描式電子顯微鏡微觀形態(SEM) 62 4.1.4 X射線衍射儀分析(XRD) 66 4.2 熱分析 68 4.2.1 熱重分析儀(TGA) 68 4.2.2 差示掃描量熱法(DSC) 74 4.3 機械性質 77 4.3.1 拉伸性質 77 4.4 降解測試 80 4.4.1吸水性 80 4.4.2 土壤降解分析 83 小結 86 第二部分 擬熱可塑性木薯澱粉/PE複合材 88 4.5 型態分析 88 4.5.1 掃描式電子顯微鏡微觀形態(SEM) 88 4.6 熱分析 90 4.6.1 熱重分析儀(TGA) 90 4.6.2 差示掃描量熱法(DSC) 92 4.7 機械性質 94 4.7.1拉伸試驗 94 4.7.1土壤降解性 96 小結 98 第5章 結論 99 第7章 參考文獻 101

    [1] G. Q. Chen and M. K. Patel, “Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review”, Chemical Reviews, Vol. 112, pp. 2082–2099, 2012.
    [2] Y. Li, X. Zhao, Y. Li and X. Li, “Waste incineration industry and development policies in China”, Waste Management, Vol. 46, pp. 234-241, 2015.
    [3] L. Canopoli, B. Fidalgo, F. Coulon, and S.T. Wagland, “Physico-chemical properties of excavated plastic from landfill mining and current recycling routes”, aste Management, pp. 1-13, 2018.
    [4] Standard Terminology Relating to Plastics , ASTMD883-92 ,2010.
    [5] C. L. Beyler and M. M. Hirschler, “Chapter 7 Thermal Decomposition of Polymers”, SFPE Handbook of Fire Protection Engineering, pp. 110-131, 2005.
    [6] S. Andrea, Carlini, A. Lisa and N. C. Gianneschi, “Biosynthetic Polymers as Functional Materials”, Macromolecules, DOI: 10.1021/acs.macromol.6b00439, 2016.
    [7] Parisi, “Chapter 1 Polymer Chemistry and Synthetic Polymers”, Advanced Polymers in Medicine, DOI 10.1007/978-3-319-12478-0-1, 2015.
    [8] R. Yuval, H. Z. Moran, A. J. Domb, A. Nyska, “Biocompatibility and safety of PLA and its copolymers”, Advanced Drug Delivery Reviews, Vol. 107, pp. 153-162, 2016.
    [9] Malujdaa and D. Wilczyńskia, “The 20th International Conference: Machine Modeling and Simulations, MMS 2015 Mechanical properties investigation of natural polymers”, Procedia Engineering, Vol. 136, 263-268, 2016.
    [10] Sionkowska, “Current research on the blends of natural and synthetic polymers as new biomaterials: Review”, Progress in Polymer Science, Vol. 36, pp.1254-1276, 2011.
    [11] D. Adamcová and M. Vaverková, “Biodegradation of Degradable/Biodegradable Plastic Material in Controlled Composting Environment”, Polish Journal of Environmental Studies, Vol. 23, pp. 1465-1474, 2014.
    [12] AkitsuguOkuwaki., “Feedstock recycling of plastics in Japan”, Polymer Degradation and Stability, Vol. 85, pp.981-988, 2004.
    [13] R. Mohee, G. D. Unmar, A. Mudhoo and P. Khadoo, “Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions”, Waste Management, Vol. 28, Pp. 1624-1629 2008.
    [14] S. Ochi, “Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers”, Materials, Vol. 4, pp. 458-468, 2011.
    [15] P. Y. Mikusa, S. Alixb, J. Soulestinb, M. F. Lacrampe, P. Krawczakb, X. Coqueretc and P. Dole, “Deformation mechanisms of plasticized starch materials”, Carbohydrate Polymers, Vol. 114, pp. 450-457, 2014.
    [16] M. Nafchi1, M. Moradpour, M. Saeidi and A. K. Alias, “Thermoplastic starches: Properties, challenges, and prospects”, Starch/Starke, Vol. 65, pp. 61-72, 2013.
    [17] G. J. L. Griffin, “Starch polymer blends”, Polymer Degradation and Stability, Vol. 45, pp. 241-247, 1994.
    [18] J. L. Willett, “Mechanical Properties of LDPE/Granular Starch Composites,” Journal of Applied Polymer Science, Vol. 54, pp. 1685-1695, 1994.
    [19] P. Dole, A. Luc, C. Joly, “Evaluation of Starch-PE Multilayers: Processing and Properties,” Polymer Engineering and Science, DOI 10.1002/pen.20264, 2005.
    [20] J. Kittisak, L. Noppol, S. Phisit, W. Somchai, T. Charin and O. Toshiaki, “Reactive blending of thermoplastic starch andpolyethylene-graft-maleic anhydride with chitosan as compatibilizer”, Carbohydrate Polymers, Vol. 153, pp.89–95, 2016.
    [21] D. Datta, G. Haldera, “Enhancing degradability of plastic waste bydispersing starch into low density polyethylenematrix”, Process Safety and Environmental Protection, Vol. 114, pp. 143-152, 2018.
    [22] H. M. Park, S. R. Lee, S. R. Chowdhury, T. K. Kang, H. K. Kim, S. H. Park and C. S. Ha, “Tensile Properties, Morphology, and Biodegradability of Blends of Starch with Various Thermoplastics”, Journal of Applied Polymer Science, Vol. 86, pp. 2907-2915, 2002.
    [23] W. Jiang, X. Qiao and K. Sun, “Mechanical and thermal properties of thermoplastic acetylated starch/poly(ethylene-co-vinyl alcohol) blends”, Carbohydrate Polymers, Vol. 65, pp. 139-143, 2006.
    [24] R. Jayasekara, I. Harding, I. Bowater, G. B. Y. Christie and G. T. Lonergan, “Preparation, surface modification and characterisation of solution cast starch PVA blended films”, Polymer Testing, Vol. 23 pp. 17-27, 2004.
    [25] H. Tiana, J. Yana, A. V. Rajuluc, A. Xiang and X. Luo, “Fabrication and properties of polyvinyl alcohol/starch blend films:Effect of composition and humidity”, International Journal of Biological Macromolecules, Vol. 96, pp. 518–523, 2017.
    [26] L. J. Chang, “Reactive Blending of Biodegradable Polymers: PLA and Starch”, Journal of Polymers and the Environment, Vol. 8, pp. 33-37, 2000.
    [27] Y. Hua, Q. Wang and M. Tang, “Preparation and properties of Starch-g-PLA/poly(vinyl alcohol) composite film”, Carbohydrate Polymers, Vol. 96, pp. 384-388, 2013.
    [28] M. Akramia, I. Ghasemi, H. Azizia, M. Karrabi, M. Seyedabadi, “A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends”, Carbohydrate Polymers, Vol. 144, pp. 254-262, 2016.
    [29] N. Masina, E. C. Yahya, P. Kumar, L. C. Toit, M. Govender, S. Indermun, V. Pillay, “A review of the chemical modification techniques of starch”, Carbohydrate Polymers, Vol. 157, pp. 1226-1236, 2017.
    [30] B. Kaur, F. Ariffin, R. Bhat, A. A. Karim, “Progress in starch modification in the last decade”, Food Hydrocolloids, Vol. 26, pp. 398-404, 2012.
    [31] R. Q. Assisa, S. M. Lopesa, T. M. H. Costab, S. H. Flôresa, A. O. Rios, “Active biodegradable cassava starch films incorporated lycopene nanocapsules”, Industrial Crops & Products, Vol. 109, pp. 818-827, 2017.
    [32] C. V. Sullca, M. Vargas, L. Atares, A. Chiralt, “Thermoplastic cassava starch-chitosan bilayer films containing essential oils”, Food Hydrocolloids, Vol. 75, pp. 107-115, 2018.
    [33] C. L. Luchese, T. Garrido, J. C. Spada, I. C. Tessaro, K. Caba, “Development and characterization of cassava starch filmsincorporated with blueberry pomace”, International Journal of Biological Macromolecules, Vol. 106, pp. 834-839, 2018.
    [34] J. G. B. Derraik, “The pollution of the marine environment by plastic debris: a review”, Marine Pollution Bulletin, Vol. 44, pp. 842-852 2002.
    [35] C. Sanchez, B. Julian, P. Belleville and M. Popall, “Applications of hybrid organic–inorganic nanocomposites”, Journal of Materials Chemistry, Vol. 15, pp. 3559-3592, 2005.
    [36] R. Gaudiana and C. Brabec, “Polymer materials could bring down the cost of electricity production using photovoltaic technology to below $1 per watt for the first time, and enable mass-market, portable applications for photovoltaic technology”, Organic materials Fantastic plastic, Vol. 2, pp. 287-289, 2008.
    [37] Bárbara Bidusk., Wyller Max Ferreria da Silva.,“Starch hydrogels: The influence of the amylose content and gelatinization method”. International Journal of Biological Macromolecules, Vol 113, pp.443-449, 2018
    [38] Richard F. Tester, John Karkalas, Xin Qi, “Starch-composition, fine structure and architecture”, Journal of Cereal Science, Vol.39, pp.151-165, 2004.
    [39] Roz. A, et al., “The effect of plasticizers on thermoplastic starch compositions obtained by melt processing”, Carbohydrate Polymers, Vol.63, pp. 417-424, 2006
    [40] P. Liu, L. Yu, X. Wang, D. Li, L. Chen, X. Li, “Glass transition temperature of starches with different amylose/amylopectin ratios,” Journal of Cereal Science, Vol. 51, pp. 388-391, 2010.
    [41] J. J. G. Soest and J. F. G. Vliegenthart, “Crystallinity in starch plastics: consequences for material properties”, Elsevfer Science, Vol. 15, pp. 208-213, 1997.
    [42] Tako. M , S. Hizukuri, “Gelatinization mechanism of potato starch”, Carbohydrate Polymers, Vol. 48, pp.397-401, 2002.
    [43] J. Carlstedt, J. Wojtasz, P. Fyhr, V. Kocherbitov, “Understanding starch gelatinization: The phase diagram approachJonas”, Carbohydrate Polymers, Vol. 129, pp. 62-69, 2015.
    [44] M. Tako, Y. Tamaki, T. Teruya, Y. Takeda, “The Principles of Starch Gelatinization and Retrogradation”, Food and Nutrition Sciences, Vol. 5, pp. 280-291, 2014.
    [45] Vivi Anggraini, Enny Sudarmonowati, “Characterization of Cassava Starch Attributes of Different Genotypes”, DOI 10.1002/200800121, 2009
    [46] E. Bertoft, “Understanding Starch Structure: Recent Progress”, Agronomy, Vol. 7, pp. 56, 2017.
    [47] G. Wypych, “Handbook of polymers,” ChemTec Publishing, 2016.
    [48] S. El-Houssiny, A. A. M. Ward, S. H. Mansour, S. L. Abd-El-Messieh, “Biodegradable Blends Based on Polyvinyl Pyrrolidone for Insulation Purposes”, Journal of Applied Polymer Science, Vol. 124, pp. 3879–3891, 2012.
    [49] H. Biricika and N. Sarierb, “Comparative Study of the Characteristics of Nano Silica-Silica Fume– and Fly Ash–Incorporated Cement Mortars”, Materials Research, Vol. 17, pp. 570-582, 2014.
    [50] G.Quercia and H. J. H. Brouwer, “Application of nano-silica (nS) in concrete mixtures”, 8th fib International PhD Symposium in Civil Engineering: Proceedings, pp. 20-23, 2010.
    [51] K. Sanchez, N. Allen and C. Liauw, “Polyethylene degradation: effect of polymerization catalyst”, DOI: 10.1002/spepro.003371, 2011.
    [52] Bacher, “Microwave Chemistry in Organic Synthesis”, DOI:10.1002/9781444305548, 2007.
    [53] G. Majetich, R. Hicks, “Applications of microwave-accelerated organic synthesis”, Vol. 45, pp. 567-579, 1995.
    [54] Q. Jin, F. Liang, H. Zhang, L. Zhao, Y. Huan, D. Song, “Application of microwave techniques in analytical chemistry”, trends in analytical chemistry, Vol. 18, pp. 479-484, 1999.
    [55] D. Fan, L. Wang, N. Zhang, L. Xiong, L. Huang, J. Zhao, M. Wang and H. Zhang, “ Full-time response of starch subjected to microwave heating”, DOI:10.1038/s41598-017-04331-2, 2017.
    [56] 吳培熙, 張留城,“聚合物共混改性”, 化學工業出版社, 1996
    [57] Ismael E. Rivero, Vittoria Balsamo, “Microwave-assisted modification of starch for compatibilizing LLDPE/starch blends”, Carbohydrate Polymers, Vol. 75, pp. 343-350, 2009.
    [58] Guo-Xiu Xing, Shu-Fen Zhang, “Microwave-assisted Synthesis of Starch Maleate by Dry Method”, DOI 10.1002/200600507, 2006.
    [59] 柯揚船, 何平笙,“高分子物理教程”, 化學工業出版社, 2006
    [60] Han, C.D, “Rheology in polymer processing”, Academic Press, 1976
    [61] P. J. Halley, R. W. Truss, M. G. Markotsis, C. Chaleat, M. Russo, A. L. Sargent, I. Tan and P. A. Sopade, “A Review of Biodegradable Thermoplastic Starch Polymers”, DOI: 10.1021/bk-2007-0978.ch024, 2007.
    [62] Kavlani Neelam, Sharma Vijay, Singh Lalit, “Various Techniques For The Modification Of Starch And The Applications Of Its Derivatives”, International Research Journal Of Pharmacy, Vol. 3, pp.25-31, 2012
    [63] AbdulRasheed-Adeleke Tawakaltu, E. C. Egwim, S. S. Ochigbo, “Effect of Acetic Acid and Citric Acid Modification on Biodegradability of Cassava starch Nanocomposite Films”, Journal of Materials Science and Engineering, pp.372-379, 2015
    [64] H. P. N. Vu, N. Lumdubwong, “Starch behaviors and mechanical properties of starch blend films withdifferent plasticizers”, Carbohydrate Polymers, Vol. 154, pp. 112-120, 2016.
    [65] L. D. Roz, A. J. F. Carvalho, A. Gandini, A. A. S. Curvelo, “The effect of plasticizers on thermoplastic starch compositions obtained by melt processing”, Carbohydrate Polymers, Vol. 63, pp. 417-424, 2006.
    [66] 童啟哲, “擬熱可塑性澱粉生物可分解性材料與其產物的製備及性質之研究”,逢甲大學纖維與複合材料學系博士論文, 2011
    [67] S. M. Collins, P. A. Midgley, “Progress and opportunities in EELS and EDS tomography”, Ultramicroscopy, Vol. 180, pp. 133-141, 2017.
    [68] M. Morin, S. Pécate, E. Masi, M. Hémati, “Kinetic study and modelling of char combustion in TGA in isothermal conditions”, Fuel Vol. 203, pp. 522-536, 2017.
    [69] E. Pretsch., T. Clere., J. Seibl., W. Simon., “Table of Spectral Data for Structure Determination of Organic Compound”, 2 nd Edition, Springer-Verlag, Vol. 15 ,1989
    [70] Chandra R., Rustgi R., “Biodegradation of starch -polyethylene films in soil and by microbial cultures”, Polym.Degrad, Vol. 56, pp.185-202, 1997.

    無法下載圖示 全文公開日期 2023/06/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE