簡易檢索 / 詳目顯示

研究生: 林昆賢
Kun-Hsien Lin
論文名稱: 以界面聚合法製備高流通量微濾膜
Preparation of High Flux Microfiltration Membrane from Electrospun Nanofibers Membrane by Interfacial Polymerization
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 王英靖
none
李宗銘
none
洪伯達
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 69
中文關鍵詞: 靜電紡絲界面聚合水處理
外文關鍵詞: electrospinning; interfacial polymerization, water treatment; membrane
相關次數: 點閱:363下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用PAN電紡奈米纖維不織布做為基材,使用Hexamethylene diamine (HA)、m-phenylenediamine (MPA)、1,3-phenylenediamine-4-sulfonic acid (S-MPA)三種二胺單體,利用含浸的方式使其附著於PAN電紡奈米纖維表面上,再與己二醯氯(Adipoyl chloride)進行界面聚合反應,製備一系列的聚醯胺複合膜。利用傅利葉轉換衰減全反射紅外線光譜儀(ATR-FTIR)、掃描式電子顯微鏡(SEM)與孔隙分析儀(PMI)來鑑定聚醯胺的化學結構與複合膜的型態。流通量試驗被用來測定聚醯胺填充後的孔洞大小與聚醯胺化學結構對流通量的影響,也間接測試聚醯胺的親水性質。拉伸試驗用以測試複合膜的機械強度。本研究探討界面聚合的製備條件與聚合方法,如溶液濃度、反應時間、含浸順序、反應次數及單體化學結構等條件對微濾膜的各項過濾條件的影響。研究結果發現,改變溶液濃度與反應時間對聚醯胺的附著量及複合膜的型態的影響極低,而改變含浸順序,先含浸己二醯氯再與己二胺反應,會因為己二醯氯與水氣的反應而使附著量下降。改變反應次數後才可明顯觀察到聚醯胺附著量的提升與複合膜型態的改變,使孔洞直徑下降與機械強度增加。孔洞直徑在反應八次之後,孔洞直徑從原本的4.88μm下降至0.13μm,機械強度也從原本的1.01 kgf/cm2提升至2.88 kgf/cm2。而將二胺單體改變為混合的MPA與S-MPA後,聚醯胺填充後的複合膜,隨著S-MPA的含量增加,流通量從2415 L/m2hr逐漸增加,在二胺溶液中的單體全部為S-MPA時達到80421 L/m2hr。證實了聚醯胺中的親水基團對複合膜親水性具有正向的影響。


In this study, PAN (polyacrylonitrile) electrospun nanofibrous nonwoven membranes (ENMs) with fiber diameter in the range of 0.7-1.0 μm were used as the substrates. Interfacial polymerization of polyamides on the surface of the nanofiber was used to enhance the strength and reduce the pore size simultaneously. The first monomer was applied on the surface of the nanofibrous membranes by dip-coating. The dried membranes were then dipped in the solution containing the second monomer. The interfacial polymerization thus took place at the liquid-solid interface. Three different diamines including 1,6-hexamethylenediamine (HA), m-phenylenediamine (MPA), and 1,3-phenylenediamine-4-4sulfonic acid (S-MPA) were used to react with adipoyl choride during interfacial polymerization. The effects of monomer coating sequence, concentrations, reaction time and the numbers of reaction cycles on the amount of polyamides that formed and the pore sizes were investigated. Scanning electron microscopy micrographs revealed that the major factor related to the amounts of polyamides that formed on the surface of the nanofibrous membranes was the numbers of reaction cycles. From the bubble point measurements of the ENM, it showed that the main pore size can be reduced from 4.88 to 0.13 μm after 8 reaction cycles. The tensile strengths were also improved from 1.01 to 2.88 Kgf/cm2. Water filtration studies also revealed that the flux was decreased with smaller pore size. When different weight ratios of MPA and S-MPA were used, the water flux was increased from 2415 to 80421 L/m2hr as the hydrophilic S-MPA content was increased.

摘要 目錄 Figure 索引 Table索引 第一章 緒論 1.1 前言 1.2 膜 1.3 微過濾膜(microfiltration membrane) 1.4 聚醯胺 1.5 文獻回顧 1.6 研究動機 第二章 實驗部分 2.1 實驗藥品 2.2 靜電紡絲奈米纖維膜的製備 2.3 PAN/Polyamide複合微濾膜製備 2.4 PAN/Polyamide複合微濾膜表徵 2.4.1 孔徑分析 2.4.2 流通量分析 2.4.3 Ion exchange capacity (IEC) 第三章 結果與討論 3.1 反應參數對聚醯胺附著量的影響 3.1.1 溶液濃度 3.1.2 反應時間 3.1.3 單體含浸順序 3.1.4 反應次數 3.1.5 含磺酸根二胺對聚醯胺附著量的影響 3.2 聚醯胺附著對PAN電紡奈米纖維不織布型態的影響 3.2.1 溶液濃度與反應時間對聚醯胺附著型態的影響 3.2.2 反應次數對聚醯胺附著型態的影響 3.2.3 S-MPA進料重量分率改變對聚醯胺附著型態的影響 3.3 聚醯胺附著量對機械性質的影響 3.4 聚醯胺附著後對孔徑大小的影響 3.5 聚醯胺附著量對流通量的影響 3.5.1 反應次數對流通量的影響 3.5.2 材料性質的改變對於流通量的影響 3.6 磺酸根的含量測定 3.6.1 FT-IR測試 3.6.2 IEC測試 第四章 結論 參考文獻

1. Mulder, M., Basic Principles of Membrane Technology. 1991.
2. Atkinson, S. Membr. Technol. 2002, 2002, 10.
3. Bechhold, H. Z. Physik Chem. 1907, 60, 257.
4. Loeb, S.; Sourirajan, S., Sea Water Demineralization by Means of an Osmotic Membrane. 1963.
5. Baker, R. W. M., Membrane Technology and Applications. 2004.
6. Macedonio, F.; Drioli, E. Desalination 2008, 223, 396.
7. Strathmann, H.; Kock, K. Desalination 1977, 21, 241.
8. Kurata, M., Thermodynamics of Polymer Solution. 1982.
9. Vandeweerdt, P.; Berghmans, H.; Tervoort, Y. Macromolecules 1991, 24, 3547.
10. Hua, F. J.; Park, T. G.; Lee, D. S. Polymer 2003, 44, 1911.
11. Cha, B. J.; Yang, J. M. J. Membr. Sci. 2007, 291, 191.
12. Zeman, L.; Fraser, T. J. Membr. Sci. 1994, 87, 267.
13. Wang, Y.-C.; Li, C.-L.; Huang, J.; Lin, C.; Lee, K.-R.; Liaw, D.-J.; Lai, J.-Y. J. Membr. Sci. 2001, 185, 193.
14. Lai, J.-Y.; Liu, M.-J.; Lee, K.-R. J. Membr. Sci. 1994, 86, 103.
15. Lin, F.-C.; Wang, D.-M.; Lai, J.-Y. J. Membr. Sci. 1996, 110, 25.
16. Gopal, R.; Kaur, S.; Ma, Z.; Chan, C.; Ramakrishna, S.; Matsuura, T. J. Membr. Sci. 2006, 281, 581.
17. Qin, X.-H.; Wang, S.-Y. J. Appl. Polym. Sci. 2008, 109, 951.
18. Kricheldorf, H. R. Handbook of Polymer Synthesis 1991.
19. Sourirajan, S., Reverse Osmosis and Synthetic Membranes. 1977.
20. Petersen, R. J. J. Membr. Sci. 1993, 83, 81.
21. Oh, N.-W.; Jegal, J.; Lee, K.-H. J. Appl. Polym. Sci. 2001, 80, 2729.
22. Wei, J.; Jian, X.; Wu, C.; Zhang, S.; Yan, C. J. Membr. Sci. 2005, 256, 116.
23. Li, L.; Wang, B.; Tan, H.; Chen, T.; Xu, J. J. Membr. Sci. 2006, 269, 84.
24. Yang, F.; Zhang, S.; Yang, D.; Jian, X. J. Membr. Sci. 2007, 301, 85.
25. Ghosh, A. K.; Hoek, E. M. V. J. Membr. Sci. 2009, 336, 140.
26. Saha, N. K.; Joshi, S. V. J. Membr. Sci. 2009, 342, 60.
27. Verissimo, S.; Peinemann, K. V.; Bordado, J. J. Membr. Sci. 2006, 279, 266.
28. Huang, S.-H.; Hsu, C.-J.; Liaw, D.-J.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. J. Membr. Sci. 2008, 307, 73.
29. Kim, C. K.; Kim, J. H.; Roh, I. J.; Kim, J. J. J. Membr. Sci. 2000, 165, 189.
30. Ahmad, A. L.; Ooi, B. S.; Choudhury, J. P. Desalination 2003, 158, 101.
31. Ramachandhran, V.; Ghosh, A. K.; Prabhakar, S.; Tewari, P. K. Sep. Sci. Technol. 2009, 44, 599.
32. Chen, G.; Li, S.; Zhang, X.; Zhang, S. J. Membr. Sci. 2008, 310, 102.
33. Li, L.; Zhang, S.; Zhang, X.; Zheng, G. J. Membr. Sci. 2007, 289, 258.
34. Li, L.; Zhang, S.; Zhang, X.; Zheng, G. J. Membr. Sci. 2008, 315, 20.
35. Buch, P. R.; Jagan Mohan, D.; Reddy, A. V. R. J. Membr. Sci. 2008, 309, 36.
36. Dickson, J. M.; Childs, R. F.; McCarry, B. E.; Gagnon, D. R. J. Membr. Sci. 1998, 148, 25.
37. Kim, I. C.; Jegal, J.; Lee, K. H. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 2151.
38. An, H.; Shin, C.; Chase, G. G. J. Membr. Sci. 2006, 283, 84.
39. Yoon, K.; Hsiao, B. S.; Chu, B. J. Membr. Sci. 2009, 326, 484.
40. Susanto, H.; Stahra, N.; Ulbricht, M. J. Membr. Sci. 2009, 342, 153.
41. Qiu, J.; Zhai, M.; Chen, J.; Wang, Y.; Peng, J.; Xu, L.; Li, J.; Wei, G. J. Membr. Sci. 2009, 342, 215-220.
42. Mei-Chuan, P.; Jui-Che, L.; Chiung-Yu, C.; Jiunn-Jong, W.; Xi-Zhang, L. J. Appl. Polym. Sci. 2004, 92, 2450.

無法下載圖示 全文公開日期 2015/01/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE