簡易檢索 / 詳目顯示

研究生: Tran Giang Son
Tran Giang Son
論文名稱: 利用二氧化錳選擇性電催化甘油氧化成增值產物之研究
Study of Selective Glycerol Electrooxidation to Value-Added Products Using MnO2 Electrocatalyst
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 江佳穎
Chia-Ying Chiang
張家耀
Jia-Yaw Chang
胡哲嘉
Che-chia Hu
戴龑
Yian Tai
潘詠庭
Yung-Tin Pan
林正嵐
Cheng-Lan Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 101
外文關鍵詞: Glycerol electrooxidation, 1,3-dihydroxyacetone, operando Raman, MnO2 polymorphs
相關次數: 點閱:56下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


The global excess of crude glycerol has led to a glycerol market price decline and left negative impacts on the biodiesel economy. The high cost associated with purifying the crude glycerol raw material restricts its applicability and necessitates the development of innovative ways for its valorization. In contrast to typical thermocatalytic approaches, electrocatalytic techniques facilitate selective conversion under ambient conditions and promote efficient co-production of hydrogen through paired cathodic reactions. An emerging focus has been dedicated to developing low‐cost, selective, and durable non-noble metal catalysts. Almost all studies carried out under strong basic media (pH ≥13) and high applied potential report formic acid as the main product and low selectivity toward 3-carbon products (i.e., 1,3 dihydroxyacetone, glyceraldehyde, glyceric acid, tartronic acid,...).
In this study, a cheap and robust electrocatalyst, α-MnO2, was developed to convert glycerol to various 3-carbon compounds. α-MnO2 showed high selectivity toward 1,3-dihydroxyacetone (about 45%) under a high current density of 6.0 mA cm-2 and applied potential of 2.05 V vs. RHE. By combining HPLC analysis and operando Raman spectroscopy, a hypothesized reaction route for the electrooxidation of glycerol on the MnO2 catalyst in pH 9 media was tentatively suggested. The observed high formic acid selectivity at low applied potential may be attributed to the predominant of α-MnO2 on the catalyst surface. Conversely, at higher applied potential, the formation of the δ-MnO2 phase becomes more prominent, leading to a decrease in C-C bond breaking, resulting in high selectivity towards 1,3-dihydroxyacetone.
The next part evaluated the catalytic activity towards GEOR of three primary MnO2 crystal structures, namely α-, β-, and γ-MnO2. Although three crystal structure catalysts yielded similar product distribution toward the 3-carbon product (~50% for 1,3 dihydroxyacetone and 40% for glyceraldehyde), the γ-MnO2 exhibited superior glycerol electrooxidation performance due to high geometric current density (~1.9 mA cm-2) and satisfactory stability. The HPLC and operando Raman findings indicated that high applied potential facilitated the formation of low crystalline δ-MnO2, which might hinder C-C bond breakage, resulting in high selectivity of 1,3-dihydroxyacetone and glyceraldehyde. The initial crystal structure played a pivotal role in the surface evolution process, resulting in a unique surface composition and yielding diverse catalytic activity.

ABSTRACT i Acknowledgment iii Table of Contents iv List of Figures vi List of Tables ix Chapter 1. Introduction 1 1.1. Challenge and motivation 1 1.2. Organization of the dissertation 2 Chapter 2. Literature Review 4 2.1. The oversupply of glycerol 4 2.2. Glycerol electro-valorization and added-value products' market viability 6 2.3. Earth-abundant electrocatalyst for GEOR 9 2.4. MnO2 as an electrocatalyst for GEOR 13 2.4.1. Formation mechanism of MnO2 polymorphs 13 2.4.2. Application of different MnO2 crystal structures 15 2.4.3. Raman spectra of MnO2 17 2.4.4. Glycerol valorization using MnO2 19 Chapter 3. Experimental Method 21 3.1. Chemical and equipment 21 3.2. Material synthesis 22 3.3. Characterization methods 23 3.4. Quantitative analysis 26 Chapter 4. Earth-abundant Manganese Oxide Nanoneedle as Highly Efficient Electrocatalyst for Selective Glycerol Electro-oxidation to Dihydroxyacetone 28 4.1. Introduction 28 4.2. Experimental section 29 4.3. Result and discussion 31 4.4. Conclusion 50 Chapter 5. Operando Revealing Crystal Phase Transformation and Electrocatalytic Activity Correlation of MnO2 toward Glycerol Electrooxidation 52 5.1. Introduction 52 5.2. Experimental section 54 5.3. Result and Discussion 56 5.4. Conclusion 84 Chapter 6. Summary and Future Outlook 86 6.1. Summary 86 6.2. Future outlook 87 REFERENCE 88 APPENDIX 99

[1] I. Int., Energy Angency, (2016) 1-77.
[2] OECD-FAO, Biofuels, (ed.) A.O, 2011-2020, (2011).
[3] A.E. Atabani, A.S. Silitonga, I.A. Badruddin, T. Mahlia, H. Masjuki, S. Mekhilef, A Comprehensive Review on Biodiesel as an Alternative Energy Resource and Its Characteristics, Renewable and Sustainable Energy Reviews, 16 (2012) 2070-2093.
[4] M. Simões, S. Baranton, C. Coutanceau, Electrochemical Valorisation of Glycerol, ChemSusChem, 5 (2012) 2106-2124.
[5] P.A. Alaba, C.S. Lee, F. Abnisa, M.K. Aroua, P. Cognet, Y. Pérès, W.M.A.W. Daud, A Review of Recent Progress on Electrocatalysts toward Efficient Glycerol Electrooxidation, Reviews in Chemical Engineering, 1 (2020).
[6] B. Katryniok, H. Kimura, E. Skrzyńska, J.-S. Girardon, P. Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil, Selective Catalytic Oxidation of Glycerol: Perspectives for High Value Chemicals, Green Chemistry, 13 (2011) 1960-1979.
[7] M. Simões, S. Baranton, C. Coutanceau, Electro-oxidation of Glycerol at Pd Based Nano-Catalysts for an Application in Alkaline Fuel Cells for Chemicals and Energy Cogeneration, Applied Catalysis B: Environmental, 93 (2010) 354-362.
[8] Z. Zhang, L. Xin, W. Li, Electrocatalytic Oxidation of Glycerol on Pt/C in Anion-Exchange Membrane fuel cell: Cogeneration of Electricity and Valuable Chemicals, Applied Catalysis B: Environmental, 119 (2012) 40-48.
[9] Y. Kwon, K.J.P. Schouten, M.T. Koper, Mechanism of the Catalytic Oxidation of Glycerol on Polycrystalline Gold and Platinum Electrodes, ChemCatChem, 3 (2011) 1176-1185.
[10] A. Zalineeva, S. Baranton, C. Coutanceau, How do Bi-Modified Palladium Nanoparticles Work towards Glycerol Electrooxidation? An In-situ FTIR Study, Electrochimica Acta, 176 (2015) 705-717.
[11] Y. Kwon, S.C. Lai, P. Rodriguez, M.T. Koper, Electrocatalytic Oxidation of Alcohols on Gold in Alkaline Media: Base or Gold Catalysis?, Journal of the American Chemical Society, 133 (2011) 6914-6917.
[12] J. Qi, L. Xin, D.J. Chadderdon, Y. Qiu, Y. Jiang, N. Benipal, C. Liang, W. Li, Electrocatalytic Selective Oxidation of Glycerol to Tartronate on Au/C Anode Catalysts in Anion Exchange Membrane Fuel Cells with Electricity Cogeneration, Applied Catalysis B: Environmental, 154 (2014) 360-368.
[13] J. Zhang, Y. Shen, Electro-oxidation of Glycerol into Formic Acid by Nickel-Copper Electrocatalysts, Journal of The Electrochemical Society, 168 (2021) 084510.
[14] M.S. Houache, K. Hughes, R. Safari, G.A. Botton, E.A. Baranova, Modification of Nickel Surfaces by Bismuth: Effect on Electrochemical Activity and Selectivity toward Glycerol, ACS Applied Materials & Interfaces, 12 (2020) 15095-15107.
[15] L. Dong, G.-R. Chang, Y. Feng, X.-Z. Yao, X.-Y. Yu, Regulating Ni Site in NiV LDH for Efficient Electrocatalytic Production of Formate and Hydrogen by Glycerol Electrolysis, Rare Metals, (2022) 1-12.
[16] V. Tripathi, S. Jain, D. Kabra, L.S. Panchakarla, A. Dutta, Cobalt-doped Copper Vanadate: a Dual Active Electrocatalyst Propelling Efficient H 2 Evolution and Glycerol Oxidation in Alkaline Water, Nanoscale Advances, 5 (2023) 237-246.
[17] C. Liu, M. Hirohara, T. Maekawa, R. Chang, T. Hayashi, C.-Y. Chiang, Selective Electro-Oxidation of Glycerol to Dihydroxyacetone by a Non-Precious Electrocatalyst–CuO, Applied Catalysis B: Environmental, 265 (2020) 118543.
[18] T.G. Vo, G.S. Tran, C.L. Chiang, Y.G. Lin, H.E. Chang, H.H. Kuo, C.Y. Chiang, Y.J. Hsu, Au@ NiSx Yolk@ Shell Nanostructures as Dual‐Functional Electrocatalysts for Concomitant Production of Value‐Added Tartronic Acid and Hydrogen Fuel, Advanced Functional Materials, 33 (2023) 2209386.
[19] T.-G. Vo, P.-Y. Ho, C.-Y. Chiang, Operando Mechanistic Studies of Selective Oxidation of Glycerol to Dihydroxyacetone over Amorphous Cobalt Oxide, Applied Catalysis B: Environmental, 300 (2022) 120723.
[20] X. Huang, Y. Zou, J. Jiang, Electrochemical Oxidation of Glycerol to Dihydroxyacetone in Borate Buffer: Enhancing Activity and Selectivity by Borate–Polyol Coordination Chemistry, ACS Sustainable Chemistry & Engineering, 9 (2021) 14470-14479.
[21] Y. Tang, S. Zheng, Y. Xu, X. Xiao, H. Xue, H. Pang, Advanced Batteries Based on Manganese Dioxide and Its Composites, Energy Storage Materials, 12 (2018) 284-309.
[22] M. Rabe, C. Toparli, Y.-H. Chen, O. Kasian, K.J. Mayrhofer, A. Erbe, Alkaline Manganese Electrochemistry Studied by In-situ and Operando Spectroscopic Methods–Metal Dissolution, Oxide Formation and Oxygen Evolution, Physical Chemistry Chemical Physics, 21 (2019) 10457-10469.
[23] J. Zhang, Y. Li, L. Wang, C. Zhang, H. He, Catalytic Oxidation of Formaldehyde over Manganese Oxides with Different Crystal Structures, Catalysis Science & Technology, 5 (2015) 2305-2313.
[24] K. Selvakumar, S.S. Kumar, R. Thangamuthu, G. Kruthika, P. Murugan, Development of Shape-engineered α-MnO2 Materials as Bi-functional Catalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction in Alkaline Medium, International Journal of Hydrogen Energy, 39 (2014) 21024-21036.
[25] A. Massa, S. Hernández, A. Lamberti, C. Galletti, N. Russo, D. Fino, Electro-oxidation of Phenol over Electrodeposited MnOx Nanostructures and the Role of a TiO2 Nanotubes Interlayer, Applied Catalysis B: Environmental, 203 (2017) 270-281.
[26] E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba, M. Hara, Effect of MnO2 Crystal Structure on Aerobic Oxidation of 5-Hydroxymethylfurfural to 2, 5-Furandicarboxylic Acid, Journal of the American Chemical Society, 141 (2019) 890-900.
[27] X. Yin, X. Duan, Q. You, C. Dai, Z. Tan, X. Zhu, Biodiesel Production from Soybean Oil Deodorizer Distillate Usingcalcined Duck Eggshell as Catalyst, Energy Conversion and Management, 112 (2016) 199-207.
[28] Y. Sharma, B. Singh, Development of Biodiesel: Current Scenario, Renewable and Sustainable Energy Reviews, 13 (2009) 1646-1651.
[29] C. Carraretto, A. Macor, A. Mirandola, A. Stoppato, S. Tonon, Biodiesel as Alternative Fuel: Experimental Analysis and Energetic Evaluations, Energy, 29 (2004) 2195-2211.
[30] OECD-FAO, Agricultural Outlook 2016, OECD Publishing: Paris, (2016).
[31] C.A. Quispe, C.J. Coronado, J.A. Carvalho Jr, Glycerol: Production, Consumption, Prices, Characterization and New Trends in Combustion, Renewable and Sustainable Energy Reviews, 27 (2013) 475-493.
[32] F. Arshad, T.u. Haq, I. Hussain, F. Sher, Recent Advances in Electrocatalysts toward Alcohol-Assisted, Energy-Saving Hydrogen Production, ACS Applied Energy Materials, 4 (2021) 8685-8701.
[33] L. Fan, B. Liu, X. Liu, N. Senthilkumar, G. Wang, Z. Wen, Recent Progress in Electrocatalytic Glycerol Oxidation, Energy Technology, 9 (2021) 2000804.
[34] O.O. James, W. Sauter, U. Schröder, Towards Selective Electrochemical Conversion of Glycerol to 1, 3-Propanediol, RSC Advances, 8 (2018) 10818-10827.
[35] C.S. Lee, M.K. Aroua, W.M.A.W. Daud, P. Cognet, Y. Peres-Lucchese, M.A. Ajeel, Selective Electroreduction of Glycerol to 1, 2-Propanediol on a Mixed Carbon-Black Activated Carbon Electrode and a Mixed Carbon Black-Diamond Electrode, BioResources, 13 (2018) 1-16.
[36] P. Manara, A. Zabaniotou, Co-Pyrolysis of Biodiesel-Derived Glycerol with Greek lignite: A Laboratory Study, Journal of Analytical and Applied Pyrolysis, 100 (2013) 166-172.
[37] R. Delgado, J.G. Rosas, N. Gómez, O. Martínez, M.E. Sanchez, J. Cara, Energy Valorisation of Crude Glycerol and Corn Straw by Means of Slow Co-Pyrolysis: Production and Characterisation of Gas, Char and Bio-Oil, Fuel, 112 (2013) 31-37.
[38] V.K. Skoulou, A.A. Zabaniotou, Co-Gasification of Crude Glycerol with Lignocellulosic Biomass for Enhanced Syngas Production, Journal of Analytical and Applied Pyrolysis, 99 (2013) 110-116.
[39] T. Valliyappan, D. Ferdous, N. Bakhshi, A. Dalai, Production of Hydrogen and Syngas via Steam Gasification of Glycerol in a Fixed-bed Reactor, Topics in Catalysis, 49 (2008) 59-67.
[40] J. Wang, M. Zhang, Z. Zheng, F. Yu, J. Ji, The Indirect Conversion of Glycerol into 1, 3-Dihydroxyacetone over Magnetic Polystyrene Nanosphere Immobilized TEMPO Catalyst, Chemical Engineering Journal, 229 (2013) 234-238.
[41] M. Durgapal, V. Kumar, T.H. Yang, H.J. Lee, D. Seung, S. Park, Production of 1, 3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B, Bioresource technology, 159 (2014) 223-231.
[42] J. Jolly, B. Hitzmann, S. Ramalingam, K.B. Ramachandran, Biosynthesis of 1, 3-Propanediol from Glycerol with Lactobacillus Reuteri: Effect of Operating Variables, Journal of Bioscience and Bioengineering, 118 (2014) 188-194.
[43] I.C. Freitas, R.L. Manfro, M.M. Souza, Hydrogenolysis of Glycerol to Propylene Glycol in Continuous System without Hydrogen Addition over Cu-Ni Catalysts, Applied Catalysis B: Environmental, 220 (2018) 31-41.
[44] S. Adhikari, S.D. Fernando, S.F. To, R.M. Bricka, P.H. Steele, A. Haryanto, Conversion of Glycerol to Hydrogen via a Steam Reforming Process over Nickel Catalysts, Energy & Fuels, 22 (2008) 1220-1226.
[45] A. Iriondo, V. Barrio, J. Cambra, P. Arias, M. Guemez, M. Sanchez-Sanchez, R. Navarro, J. Fierro, Glycerol Steam Reforming Over Ni Catalysts Supported on Ceria and Ceria-Promoted Alumina, International Journal of Hydrogen Energy, 35 (2010) 11622-11633.
[46] C. Varrone, S. Rosa, F. Fiocchetti, B. Giussani, G. Izzo, G. Massini, A. Marone, A. Signorini, A. Wang, Enrichment of Activated Sludge for Enhanced Hydrogen Production from Crude Glycerol, International Journal of Hydrogen Energy, 38 (2013) 1319-1331.
[47] T. Kurosaka, H. Maruyama, I. Naribayashi, Y. Sasaki, Production of 1, 3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2, Catalysis Communications, 9 (2008) 1360-1363.
[48] I. Furikado, T. Miyazawa, S. Koso, A. Shimao, K. Kunimori, K. Tomishige, Catalytic Performance of Rh/SiO 2 in Glycerol Reaction under Hydrogen, Green Chemistry, 9 (2007) 582-588.
[49] J.G. Ibañez Cornejo, B.A. Frontana Uribe, R.D. Little, A. Palma, R.C. Vásquez Medrano, Organic Electrosynthesis: a Promising Green Methodology In Organic Chemistry, Green Chem., 12 (2010).
[50] O. Hammerich, B. Speiser, Organic Electrochemistry: Revised and Expanded, CRC press2015.
[51] J. Grimshaw, Electrochemical Reactions and Mechanisms in Organic Chemistry, Elsevier2000.
[52] M. Yan, Y. Kawamata, P.S. Baran, Synthetic Organic Electrochemical Methods since 2000: on The Verge of a Renaissance, Chemical reviews, 117 (2017) 13230-13319.
[53] A.B. Petersen, R. Na, H.C. Wulf, Sunless Skin Tanning with Dihydroxyacetone Delays Broad-Spectrum Ultraviolet Photocarcinogenesis in Hairless Mice, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 542 (2003) 129-138.
[54] A.B. Petersen, H.C. Wulf, R. Gniadecki, B. Gajkowska, Dihydroxyacetone, the Active Browning Ingredient in Sunless Tanning Lotions, induces DNA Damage, Cell-cycle Block and Apoptosis in Cultured HaCaT Keratinocytes, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 560 (2004) 173-186.
[55] B.-C. Nguyen, I.E. Kochevar, Influence of Hydration on Dihydroxyacetone-induced Pigmentation of Stratum Corneum, Journal of investigative dermatology, 120 (2003) 655-661.
[56] A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner, Improved Utilisation of Renewable Resources: New Important Derivatives of Glycerol, Green Chemistry, 10 (2008) 13-30.
[57] L.C. Coelho, M. Nelson Filho, R.P. Faria, A.F. Ferreira, A.M. Ribeiro, A.E. Rodrigues, Separation of Tartronic and Glyceric Acids by Simulated Moving Bed Chromatography, Journal of Chromatography A, 1563 (2018) 62-70.
[58] S. Claude, Research of New Outlets for Glycerol‐recent Developments in France, Lipid/Fett, 101 (1999) 101-104.
[59] H. Habe, T. Fukuoka, D. Kitamoto, K. Sakaki, Biotechnological Production of D-glyceric Acid and its Application, Applied Microbiology and Biotechnology, 84 (2009) 445-452.
[60] G. Caselli, M. Mantovanini, C.A. Gandolfi, M. Allegretti, S. Fiorentino, L. Pellegrini, G. Melillo, R. Bertini, W. Sabbatini, R. Anacardio, Tartronates: a New Generation of Drugs Affecting Bone Metabolism, Journal of Bone and Mineral Research, 12 (1997) 972-981.
[61] S.R. Clough, Glyceraldehyde, (2014).
[62] S. Bagheri, N.M. Julkapli, W.A. Yehye, Catalytic Conversion of Biodiesel Derived Raw Glycerol to Value-Added Products, Renewable and Sustainable Energy Reviews, 41 (2015) 113-127.
[63] S. Illman, Hilbert's Fifth Problem, Journal of Mathematical Sciences, 105 (2001) 1843-1847.
[64] R. Ciriminna, M. Pagliaro, One‐pot Homogeneous and Heterogeneous Oxidation of Glycerol to Ketomalonic Acid Mediated by TEMPO, Advanced Synthesis & Catalysis, 345 (2003) 383-388.
[65] S.-J. Cho, T. Nguyen, J.-H. Boo, Polyimide Surface Modification by Using Microwave Plasma for Adhesion Enhancement of Cu Electroless Plating, Journal of Nanoscience and Nanotechnology, 11 (2011) 5328-5333.
[66] W. Qin, Y. Zhang, Z. Li, Y. Dai, Extraction Equilibria of Glycolic and Glyoxylic Acids with Trialkylphosphine Oxide and Trioctylamine as Extractant, Journal of Chemical & Engineering Data, 48 (2003) 430-434.
[67] Y. Xiong, J. Dong, Z.-Q. Huang, P. Xin, W. Chen, Y. Wang, Z. Li, Z. Jin, W. Xing, Z. Zhuang, Single-Atom Rh/N-Doped Carbon Electrocatalyst for Formic Acid Oxidation, Nature Nanotechnology, 15 (2020) 390-397.
[68] B. Thijs, J. Rongé, J.A. Martens, Matching Emerging Formic Acid Synthesis Processes with Application Requirements, Green Chemistry, 24 (2022) 2287-2295.
[69] A. Garron, F. Epron, Use of Formic Acid as Reducing Agent for Application in Catalytic Reduction of Nitrate in Water, Water Research, 39 (2005) 3073-3081.
[70] S.C. Ricke, D.K. Dittoe, K.E. Richardson, Formic Acid as an Antimicrobial for Poultry Production: A Review, Frontiers in Veterinary Science, 7 (2020) 563.
[71] C.H. Lam, A.J. Bloomfield, P.T. Anastas, A Switchable Route to Valuable Commodity Chemicals from Glycerol via Electrocatalytic Oxidation with an Earth Abundant Metal Oxidation Catalyst, Green Chemistry, 19 (2017) 1958-1968.
[72] X. Huang, Y. Guo, Y. Zou, J. Jiang, Electrochemical Oxidation of Glycerol to Hydroxypyruvic Acid on Cobalt (oxy) Hydroxide by High-Valent Cobalt Redox Centers, Applied Catalysis B: Environmental, 309 (2022) 121247.
[73] T.-G. Vo, P.-Y. Tsai, C.-Y. Chiang, Tuning Selectivity and Activity of the Electrochemical Glycerol Oxidation Reaction by Manipulating Morphology and Exposed Facet of Spinel Cobalt Oxides, Journal of Catalysis, 424 (2023) 64-73.
[74] V. Oliveira, C. Morais, K. Servat, T. Napporn, G. Tremiliosi-Filho, K. Kokoh, Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium, Electrochimica Acta, 117 (2014) 255-262.
[75] M.E. Ghaith, G.A. El-Nagar, M.G. Abd El-Moghny, H.H. Alalawy, M.E. El-Shakre, M.S. El-Deab, Electrocatalysis by Design: Enhanced Electro-oxidation of Glycerol at NiOx Nanoparticle Modified 3D Porous Carbon Felts, International Journal of Hydrogen Energy, 45 (2020) 9658-9668.
[76] Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nickel-molybdenum Nitride Nanoplate Electrocatalysts for Concurrent Electrolytic Hydrogen and Formate Productions, Nature Communications, 10 (2019) 5335.
[77] M. Musil, B. Choi, A. Tsutsumi, Morphology and Electrochemical Properties of α-, β-, γ-, and δ-MnO2 Synthesized by Redox Method, Journal of the Electrochemical Society, 162 (2015) A2058.
[78] B. Yin, S. Zhang, H. Jiang, F. Qu, X. Wu, Phase-Controlled Synthesis of Polymorphic MnO2 Structures for Electrochemical Energy Storage, Journal of Materials Chemistry A, 3 (2015) 5722-5729.
[79] B. Lan, X. Zheng, G. Cheng, J. Han, W. Li, M. Sun, L. Yu, The Art of Balance: Engineering of Structure Defects and Electrical Conductivity of α-MnO2 for Oxygen Reduction Reaction, Electrochimica Acta, 283 (2018) 459-466.
[80] S. Rong, P. Zhang, F. Liu, Y. Yang, Engineering Crystal Facet of α-MnO2 Nanowire for Highly Efficient Catalytic Oxidation of Carcinogenic Airborne Formaldehyde, ACS Catalysis, 8 (2018) 3435-3446.
[81] L.M. Housel, L. Wang, A. Abraham, J. Huang, G.D. Renderos, C.D. Quilty, A.B. Brady, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, Investigation of α-MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage, Accounts of Chemical Research, 51 (2018) 575-582.
[82] A. Chalkidis, D. Jampaiah, P.G. Hartley, Y.M. Sabri, S.K. Bhargava, Regenerable α-MnO2 Nanotubes for Elemental Mercury Removal from Natural Gas, Fuel processing technology, 193 (2019) 317-327.
[83] F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, P. Shen, Facile Controlled Synthesis of MnO2 Nanostructures of Novel Shapes and Their Application in Batteries, Inorganic Chemistry, 45 (2006) 2038-2044.
[84] W. Xiao, H. Xia, J.Y. Fuh, L. Lu, Growth of Single-Crystal α-MnO2 Nanotubes Prepared by a Hydrothermal Route and Their Electrochemical Properties, Journal of Power Sources, 193 (2009) 935-938.
[85] W. Xiao, D. Wang, X.W. Lou, Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction, The Journal of Physical Chemistry C, 114 (2010) 1694-1700.
[86] W. Li, X. Cui, R. Zeng, G. Du, Z. Sun, R. Zheng, S.P. Ringer, S.X. Dou, Performance Modulation of α-MnO2 Nanowires by Crystal Facet Engineering, Scientific Reports, 5 (2015) 8987.
[87] H. Kakizaki, H. Ooka, T. Hayashi, A. Yamaguchi, N. Bonnet‐Mercier, K. Hashimoto, R. Nakamura, Evidence that Crystal Facet Orientation Dictates Oxygen Evolution Intermediates on Rutile Manganese Oxide, Advanced Functional Materials, 28 (2018) 1706319.
[88] W. Yao, G.M. Odegard, Z. Huang, Y. Yuan, H. Asayesh-Ardakani, S. Sharifi-Asl, M. Cheng, B. Song, R. Deivanayagam, F. Long, Cations Controlled Growth of β-MnO2 Crystals with Tunable Facets for Electrochemical Energy Storage, Nano Energy, 48 (2018) 301-311.
[89] C. Chen, K. Xu, X. Ji, L. Miao, J. Jiang, Promoted Electrochemical Performance of β-MnO2 through Surface Engineering, ACS Applied Materials & Interfaces, 9 (2017) 15176-15181.
[90] J. Yang, J. Wang, S. Ma, B. Ke, L. Yu, W. Zeng, Y. Li, J. Wang, Insight into the Effect of Crystalline Structure on the Oxygen Reduction Reaction Activities of One-Dimensional MnO2, Physica E: Low-dimensional Systems and Nanostructures, 109 (2019) 191-197.
[91] F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media, Chemistry of Materials, 22 (2010) 898-905.
[92] G. Gupta, K. Selvakumar, N. Lakshminarasimhan, S.M.S. Kumar, M. Mamlouk, The Effects of Morphology, Microstructure and Mixed-Valent States of MnO2 on the Oxygen Evolution Reaction Activity in Alkaline Anion Exchange Membrane Water Electrolysis, Journal of Power Sources, 461 (2020) 228131.
[93] G.A. Oxford, A.M. Chaka, First-principles Calculations of Clean, Oxidized, and Reduced β-MnO2 Surfaces, The Journal of Physical Chemistry C, 115 (2011) 16992-17008.
[94] R. Frydendal, E.A. Paoli, I. Chorkendorff, J. Rossmeisl, I.E. Stephens, Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti‐stabilized MnO2, Advanced Energy Materials, 5 (2015) 1500991.
[95] V. Tripkovic, H.A. Hansen, T. Vegge, Computational Screening of Doped α‐mno2 Catalysts for the Oxygen Evolution Reaction, ChemSusChem, 11 (2018) 629-637.
[96] T. Gao, H. Fjellvåg, P. Norby, A Comparison Study on Raman Scattering Properties of α-and β-MnO2, Analytica Chimica Acta, 648 (2009) 235-239.
[97] C. Julien, M. Massot, S. Rangan, M. Lemal, D. Guyomard, Study of Structural Defects in γ‐MnO2 by Raman Spectroscopy, Journal of Raman Spectroscopy, 33 (2002) 223-228.
[98] W. Chen, G. Li, A. Pei, Y. Li, L. Liao, H. Wang, J. Wan, Z. Liang, G. Chen, H. Zhang, A Manganese–Hydrogen Battery with Potential for Grid-Scale Energy Storage, Nature Energy, 3 (2018) 428-435.
[99] Y. Liu, W. Zong, H. Zhou, D. Wang, R. Cao, J. Zhan, L. Liu, B.W.-L. Jang, Tuning the Interlayer Cations of Birnessite-type MnO 2 to Enhance Its Oxidation Ability for Gaseous Benzene with Water Resistance, Catalysis Science & Technology, 8 (2018) 5344-5358.
[100] A.S. Poyraz, J. Huang, C.J. Pelliccione, X. Tong, S. Cheng, L. Wu, Y. Zhu, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, Synthesis of Cryptomelane Type α-MnO 2 (K x Mn 8 O 16) Cathode Materials With Tunable K+ Content: The Role of Tunnel Cation Concentration on Electrochemistry, Journal of Materials Chemistry A, 5 (2017) 16914-16928.
[101] N. Huang, Z. Qu, C. Dong, Y. Qin, X. Duan, Superior Performance of α@ β-MnO2 for the Toluene Oxidation: Active Interface and Oxygen Vacancy, Applied Catalysis A: General, 560 (2018) 195-205.
[102] Y. Dong, K. Li, P. Jiang, G. Wang, H. Miao, J. Zhang, C. Zhang, Simple Hydrothermal Preparation of α-, β-, and γ-MnO2 and Phase Sensitivity in Catalytic Ozonation, RSC Advances, 4 (2014) 39167-39173.
[103] S. Tsunekawa, F. Yamamoto, K.-H. Wang, M. Nagasaka, H. Yuzawa, S. Takakusagi, H. Kondoh, K. Asakura, T. Kawai, M. Yoshida, Operando Observations of a Manganese Oxide Electrocatalyst for Water Oxidation Using Hard/Tender/Soft X-ray Absorption Spectroscopy, The Journal of Physical Chemistry C, 124 (2020) 23611-23618.
[104] Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen, S.L. Suib, Structure–Property Relationship of Bifunctional MnO2 Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media, Journal of the American Chemical Society, 136 (2014) 11452-11464.
[105] Y. Li, X. Wei, S. Han, L. Chen, J. Shi, MnO2 Electrocatalysts Coordinating Alcohol Oxidation for Ultra‐Durable Hydrogen and Chemical Productions in Acidic Solutions, Angewandte Chemie International Edition, 60 (2021) 21464-21472.
[106] Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M.T. Koper, Highly Selective Electro-Oxidation of Glycerol to Dihydroxyacetone on Platinum in the Presence of Bismuth, ACS Catalysis, 2 (2012) 759-764.
[107] Z. Zhang, L. Xin, W. Li, Supported gold nanoparticles as anode catalyst for anion-exchange membrane-direct glycerol fuel cell (AEM-DGFC), international journal of hydrogen energy, 37 (2012) 9393-9401.
[108] H. Inoue, S. Kimura, Y. Teraoka, M. Chiku, E. Higuchi, B.T.X. Lam, Mechanism of Glycerol Oxidation Reaction on Silver-modified Palladium Electrode in Alkaline Medium, International Journal of Hydrogen Energy, 43 (2018) 18664-18671.
[109] V.M. de Araujo, E. Antolini, L.A. Pocrifka, R.R. Passos, Electro-oxidation of Glycerol on Carbon Supported Pt75CoxNi25-x (x= 0, 0.9, 12.5, 24.1 and 25) Catalysts in an Alkaline Medium, Electrocatalysis, 9 (2018) 673-681.
[110] H. Wang, L. Thia, N. Li, X. Ge, Z. Liu, X. Wang, Selective Electro-oxidation of Glycerol over Au Supported on Extended Poly (4-vinylpyridine) Functionalized Graphene, Applied Catalysis B: Environmental, 166 (2015) 25-31.
[111] Y. Kwon, M.T. Koper, Combining Voltammetry with HPLC: Application to Electro-oxidation of Glycerol, Analytical Chemistry, 82 (2010) 5420-5424.
[112] M.S. Ahmad, S. Singh, C.K. Cheng, H.R. Ong, H. Abdullah, M.R. Khan, S. Wongsakulphasatch, Glycerol Electro-Oxidation to Dihydroxyacetone on Phosphorous-Doped Pd/CNT Nanoparticles in Alkaline Medium, Catalysis Communications, 139 (2020) 105964.
[113] G.L. Caneppele, T.S. Almeida, C.R. Zanata, É. Teixeira-Neto, P.S. Fernández, G.A. Camara, C.A. Martins, Exponential Improving in the Activity of Pt/C Nanoparticles towards Glycerol Electrooxidation by Sb Ad-atoms Deposition, Applied Catalysis B: Environmental, 200 (2017) 114-120.
[114] Z.-Y. Li, J. Zhou, L.-S. Tang, X.-P. Fu, H. Wei, M. Xue, Y.-L. Zhao, C.-J. Jia, X.-M. Li, H.-B. Chu, Hydroxyl-rich Ceria Hydrate Nanoparticles Enhancing the Alcohol Electrooxidation Performance of Pt Catalysts, Journal of Materials Chemistry A, 6 (2018) 2318-2326.
[115] S. Cheng, L. Yang, D. Chen, X. Ji, Z.-j. Jiang, D. Ding, M. Liu, Phase Evolution of an Alpha MnO2-based Electrode for Pseudo-capacitors Probed by in Operando Raman Spectroscopy, Nano Energy, 9 (2014) 161-167.
[116] A.C. Thenuwara, E.B. Cerkez, S.L. Shumlas, N.H. Attanayake, I.G. McKendry, L. Frazer, E. Borguet, Q. Kang, R.C. Remsing, M.L. Klein, Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation, Angewandte Chemie, 128 (2016) 10537-10541.
[117] A. Khan, H. Wang, Y. Liu, A. Jawad, J. Ifthikar, Z. Liao, T. Wang, Z. Chen, Highly Efficient α-Mn 2 O 3@ α-MnO 2-500 Nanocomposite for Peroxymonosulfate Activation: Comprehensive Investigation of Manganese Oxides, Journal of Materials Chemistry A, 6 (2018) 1590-1600.
[118] Y. Yang, J. Huang, S. Wang, S. Deng, B. Wang, G. Yu, Catalytic Removal of Gaseous Unintentional POPs on Manganese Oxide Octahedral Molecular Sieves, Applied Catalysis B: Environmental, 142 (2013) 568-578.
[119] J. Gao, C. Jia, L. Zhang, H. Wang, Y. Yang, S.-F. Hung, Y.-Y. Hsu, B. Liu, Tuning Chemical Bonding of MnO2 Through Transition-Metal Doping for Enhanced CO Oxidation, Journal of Catalysis, 341 (2016) 82-90.
[120] C. Dong, Z. Qu, X. Jiang, Y. Ren, Tuning Oxygen Vacancy Concentration of MnO2 through Metal Doping for Improved Toluene Oxidation, Journal of Hazardous Materials, 391 (2020) 122181.
[121] H. Wang, L. Thia §, N. Li, X. Ge, Z. Liu, X. Wang, Pd Nanoparticles on Carbon Nitride–Graphene for the Selective Electro-oxidation of Glycerol in Alkaline Solution, ACS Catalysis, 5 (2015) 3174-3180.
[122] Z. Zhang, L. Xin, J. Qi, Z. Wang, W. Li, Selective Electro-conversion of Glycerol to Glycolate on Carbon Nanotube Supported Gold Catalyst, Green Chemistry, 14 (2012) 2150-2152.
[123] M. Rabe, C. Toparli, Y.-H. Chen, O. Kasian, K.J. Mayrhofer, A. Erbe, Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods–metal dissolution, oxide formation and oxygen evolution, Physical Chemistry Chemical Physics, 21 (2019) 10457-10469.
[124] J. Scholz, M. Risch, K.A. Stoerzinger, G. Wartner, Y. Shao-Horn, C. Jooss, Rotating Ring–disk Electrode Study of Oxygen Evolution at a Perovskite Surface: Correlating Activity to Manganese Concentration, The Journal of Physical Chemistry C, 120 (2016) 27746-27756.
[125] A.C. Garcia, M.J. Kolb, C. van Nierop y Sanchez, J. Vos, Y.Y. Birdja, Y. Kwon, G. Tremiliosi-Filho, M.T. Koper, Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol, ACS Catalysis, 6 (2016) 4491-4500.
[126] Y.-K. Hsu, Y.-C. Chen, Y.-G. Lin, L.-C. Chen, K.-H. Chen, Reversible Phase Transformation of MnO 2 Nanosheets in an Electrochemical Capacitor Investigated by In-situ Raman Spectroscopy, Chemical Communications, 47 (2011) 1252-1254.
[127] T.-H. Wu, D. Hesp, V. Dhanak, C. Collins, F. Braga, L.J. Hardwick, C.-C. Hu, Charge Storage Mechanism of Activated Manganese Oxide Composites for Pseudocapacitors, Journal of Materials Chemistry A, 3 (2015) 12786-12795.
[128] Y. Xie, Y. Yu, X. Gong, Y. Guo, Y. Guo, Y. Wang, G. Lu, Effect of the Crystal Plane Figure on the Catalytic Performance of MnO2 for the Total Oxidation of Propane, CrystEngComm, 17 (2015) 3005-3014.
[129] B. Chen, B. Wu, L. Yu, M. Crocker, C. Shi, Investigation into the Catalytic Roles of Various Oxygen Species Over Different Crystal Phases of MnO2 for C6H6 and HCHO Oxidation, ACS Catalysis, 10 (2020) 6176-6187.
[130] J. Han, Y. Kim, H.W. Kim, D.H. Jackson, D. Lee, H. Chang, H.-J. Chae, K.-Y. Lee, H.J. Kim, Effect of Atomic-Layer-Deposited TiO2 on Carbon-Supported Ni Catalysts for Electrocatalytic Glycerol Oxidation in Alkaline Media, Electrochemistry Communications, 83 (2017) 46-50.
[131] V. Oliveira, C. Morais, K. Servat, T. Napporn, G. Tremiliosi-Filho, K.B. Kokoh, Glycerol Oxidation on Nickel Based Nanocatalysts in Alkaline Medium–Identification of the Reaction Products, Journal of Electroanalytical Chemistry, 703 (2013) 56-62.
[132] D.Y. Leung, X. Wu, M. Leung, A Review on Biodiesel Production Using Catalyzed Transesterification, Applied Energy, 87 (2010) 1083-1095.
[133] F. Yang, M.A. Hanna, R. Sun, Value-added Uses for Crude Glycerol--a Byproduct of Biodiesel Production, Biotechnology for Biofuels, 5 (2012) 1-10.
[134] H.V. Amorim, M.L. Lopes, J.V. de Castro Oliveira, M.S. Buckeridge, G.H. Goldman, Scientific Challenges of Bioethanol Production in Brazil, Applied Microbiology and Biotechnology, 91 (2011) 1267-1275.
[135] M.L. Dieuzeide, R. De Urtiaga, M. Jobbagy, N. Amadeo, Vapor Phase Hydrogenolysis of Glycerol to 1, 2-propanediol at Atmospheric Pressure over Copper Catalysts Supported on Mesoporous Alumina, Catalysis Today, 296 (2017) 19-25.
[136] F. Cai, F. Jin, J. Hao, G. Xiao, Selective Hydrogenolysis of Glycerol to 1, 2-propanediol on Nb-modified Pd− Zr− Al Catalysts, Catalysis Communications, 131 (2019) 105801.
[137] A. Marshall, R. Haverkamp, Production of Hydrogen by the Electrochemical Reforming of Glycerol–Water Solutions in a PEM Electrolysis Cell, International Journal of Hydrogen Energy, 33 (2008) 4649-4654.
[138] A. Mendoza, R. Romero, G.P. Gutiérrez-Cedillo, G. López-Tellez, O. Lorenzo-González, R.M. Gómez-Espinosa, R. Natividad, Selective Production of Dihydroxyacetone and Glyceraldehyde by Photo-assisted Oxidation of Glycerol, Catalysis Today, 358 (2020) 149-154.
[139] C. Minero, A. Bedini, V. Maurino, Glycerol as a Probe Molecule to Uncover Oxidation Mechanism in Photocatalysis, Applied Catalysis B: Environmental, 128 (2012) 135-143.
[140] M.J. Orella, Y. Román-Leshkov, F.R. Brushett, Emerging Opportunities for Electrochemical Processing to Enable Sustainable Chemical Manufacturing, Current Opinion in Chemical Engineering, 20 (2018) 159-167.
[141] Z. Zhang, L. Xin, W. Li, Supported Gold Nanoparticles as Anode Catalyst for Anion-exchange Membrane-direct Dlycerol Fuel Cell (AEM-DGFC), International Journal of Hydrogen Energy, 37 (2012) 9393-9401.
[142] X. Huang, Y. Guo, Y. Zou, J. Jiang, Electrochemical Oxidation of Glycerol to Dydroxypyruvic Acid on Cobalt (Oxy)hydroxide by High-valent Cobalt Redox Centers, Applied Catalysis B: Environmental, 309 (2022) 121247.
[143] G.-S. Tran, T.-G. Vo, C.-Y. Chiang, Earth-abundant Manganese Oxide Nanoneedle as Highly Efficient Electrocatalyst for Selective Glycerol Electro-oxidation to Dihydroxyacetone, Journal of Catalysis, 404 (2021) 139-148.
[144] M.M. Thackeray, Manganese Oxides for Lithium Batteries, Progress in Solid State Chemistry, 25 (1997) 1-71.
[145] E. Saputra, S. Muhammad, H. Sun, H.M. Ang, M. Tade, S. Wang, Different Crystallographic One-dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation, Environmental Science & Technology, 47 (2013) 5882-5887.
[146] J. Wang, J. Li, C. Jiang, P. Zhou, P. Zhang, J. Yu, The Effect of Manganese Vacancy in Birnessite-type MnO2 on Room-temperature Oxidation of Formaldehyde in Air, Applied Catalysis B: Environmental, 204 (2017) 147-155.
[147] S. Royer, D. Duprez, Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides, ChemCatChem, 3 (2011) 24-65.
[148] P.K. Gupta, A. Bhandari, S. Saha, J. Bhattacharya, R.G.S. Pala, Modulating Oxygen Evolution Reactivity in MnO2 through Polymorphic Engineering, The Journal of Physical Chemistry C, 123 (2019) 22345-22357.
[149] J. Chen, Y.-M. Lee, K.M. Davis, X. Wu, M.S. Seo, K.-B. Cho, H. Yoon, Y.J. Park, S. Fukuzumi, Y.N. Pushkar, A Mononuclear Non-heme Manganese (IV)–oxo Complex Binding Redox-inactive Metal Ions, Journal of the American Chemical Society, 135 (2013) 6388-6391.
[150] H. An, Z. Chen, J. Yang, Z. Feng, X. Wang, F. Fan, C. Li, An Operando-Raman Study on Oxygen Evolution of Manganese Oxides: Roles of Phase Composition and Amorphization, Journal of Catalysis, 367 (2018) 53-61.
[151] T.-H. Wu, Y.-Q. Lin, Z.D. Althouse, N. Liu, Dissolution–Redeposition Mechanism of the MnO2 Cathode in Aqueous Zinc-Ion Batteries, ACS Applied Energy Materials, 4 (2021) 12267-12274.
[152] D. Chen, D. Ding, X. Li, G.H. Waller, X. Xiong, M.A. El-Sayed, M. Liu, Probing the Charge Storage Mechanism of a Pseudocapacitive MnO2 Electrode Using in Operando Raman Spectroscopy, Chemistry of Materials, 27 (2015) 6608-6619.
[153] S.L. Suib, Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials, Accounts of Chemical Research, 41 (2008) 479-487.
[154] H. Huang, C.-H. Chen, L. Xu, H. Genuino, J. Garcia-Martinez, H.F. Garces, L. Jin, C.K.o. Kithongo, S.L. Suib, Single-step Synthesis of Manganese Oxide Octahedral Molecular Sieves with Large Pore Sizes, Chemical Communications, 46 (2010) 5945-5947.
[155] Z. Ye, J.-M. Giraudon, N. Nuns, P. Simon, N. De Geyter, R. Morent, J.-F. Lamonier, Influence of the Preparation Method on the Activity of Copper-Manganese Oxides for Toluene Total Oxidation, Applied Catalysis B: Environmental, 223 (2018) 154-166.
[156] H. Pan, Y. Jian, C. Chen, C. He, Z. Hao, Z. Shen, H. Liu, Sphere-Shaped Mn3O4 Catalyst with Remarkable Low-temperature Activity for Methyl–ethyl–ketone Combustion, Environmental Science & Technology, 51 (2017) 6288-6297.
[157] A.A. Lourenço, V.D. Silva, R. da Silva, U. Silva, C. Chesman, C. Salvador, T.A. Simões, D.A. Macedo, F.F. da Silva, Metal-organic Frameworks as Template for Synthesis of Mn3+/Mn4+ Mixed Valence Manganese Cobaltites Electrocatalysts for Oxygen Evolution Reaction, Journal of Colloid and Interface Science, 582 (2021) 124-136.
[158] A. Garcia, M. Kolb, C. Van Nierop, Y. Sanchez, J. Vos, Y. Birdja, Y. Kwon, Strong Impact of Platinum Surface Structure on Primary and Secondary Alcohol Oxidation during Electro-oxidation of Glycerol, ACS Catal. 6 (2016) 4491–4500.
[159] J.F. Gomes, F.B.C. De Paula, L.H.S. Gasparotto, G. Tremiliosi-Filho, The Influence of the Pt Crystalline Surface Orientation on the Glycerol Electro-oxidation in Acidic Media, Electrochimica Acta, 76 (2012) 88-93.
[160] T.-G. Vo, C.-C. Kao, J.-L. Kuo, C.-c. Chiu, C.-Y. Chiang, Unveiling the Crystallographic Facet Dependence of the Photoelectrochemical Glycerol Oxidation on Bismuth Vanadate, Applied Catalysis B: Environmental, 278 (2020) 119303.
[161] J.R. Copeland, I.A. Santillan, S.M. Schimming, J.L. Ewbank, C. Sievers, Surface Interactions of Glycerol with Acidic and Basic Metal Oxides, The Journal of Physical Chemistry C, 117 (2013) 21413-21425.
[162] D. Liu, J.-C. Liu, W. Cai, J. Ma, H.B. Yang, H. Xiao, J. Li, Y. Xiong, Y. Huang, B. Liu, Selective Photoelectrochemical Oxidation of Glycerol to High Value-added Dihydroxyacetone, Nature communications, 10 (2019) 1-8.
[163] N. Goel, N. Sinha, B. Kumar, Growth and Properties of Sodium Tetraborate Decahydrate Single Crystals, Materials Research Bulletin, 48 (2013) 1632-1636.
[164] W. Liu, G. Zhao, M. An, L. Chang, Solvothermal Synthesis of Nanostructured BiVO4 with Highly Exposed (0 1 0) Facets and Enhanced Sunlight-driven Photocatalytic Properties, Applied Surface Science, 357 (2015) 1053-1063.
[165] H. Radinger, P. Connor, R. Stark, W. Jaegermann, B. Kaiser, Manganese Oxide as an Inorganic Catalyst for the Oxygen Evolution Reaction Studied by X-Ray Photoelectron and Operando Raman Spectroscopy, ChemCatChem, 13 (2021) 1175-1185.
[166] C. Julien, M. Massot, C. Poinsignon, Lattice Vibrations of Manganese Oxides: Part I. Periodic Structures, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (2004) 689-700.
[167] S. Bernardini, F. Bellatreccia, A. Casanova Municchia, G. Della Ventura, A. Sodo, Raman Spectra of Natural Manganese Oxides, Journal of Raman Spectroscopy, 50 (2019) 873-888.
[168] C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, J. Pereira-Ramos, Raman Spectra of Birnessite Manganese Dioxides, Solid State Ionics, 159 (2003) 345-356.
[169] T. Gao, M. Glerup, F. Krumeich, R. Nesper, H. Fjellvåg, P. Norby, Microstructures and Spectroscopic Properties of Cryptomelane-type Manganese Dioxide Nanofibers, The Journal of Physical Chemistry C, 112 (2008) 13134-13140.
[170] H. Chen, J. He, Facile Synthesis of Monodisperse Manganese Oxide Nanostructures and Their Application in Water Treatment, The Journal of Physical Chemistry C, 112 (2008) 17540-17545.
[171] S. Park, K. Jin, H.K. Lim, J. Kim, K.H. Cho, S. Choi, H. Seo, M.Y. Lee, Y.H. Lee, S. Yoon, Spectroscopic Capture of a Low-spin Mn(IV)-oxo Species in Ni–Mn3O4 Nanoparticles during Water Oxidation Catalysis, Nature Communications, 11 (2020) 1-10.
[172] M.F. Tesch, S.A. Bonke, T.E. Jones, M.N. Shaker, J. Xiao, K. Skorupska, R. Mom, J. Melder, P. Kurz, A. Knop‐Gericke, Evolution of Oxygen–metal Electron Transfer and Metal Electronic States during Manganese Oxide Catalyzed Water Oxidation Revealed with In-situ Soft X‐ray Spectroscopy, Angewandte Chemie, 131 (2019) 3464-3470.
[173] J. Lu, H. Wang, Y. Sun, X. Wang, X. Song, R. Wang, Charge State Manipulation Induced through Cation Intercalation into MnO2 Sheet Arrays for Efficient Water Splitting, Chemical Engineering Journal, 417 (2021) 127894.
[174] L. Yang, S. Cheng, X. Ji, Y. Jiang, J. Zhou, M. Liu, Investigations into the origin of pseudocapacitive behavior of Mn3 O4 electrodes using in operando Raman spectroscopy, Journal of Materials Chemistry A, 3 (2015) 7338-7344.

QR CODE