簡易檢索 / 詳目顯示

研究生: 李鈺偉
Yu-Wei Lee
論文名稱: 太陽能光電模組與太陽能光電熱能複合模組之動態模型建立、實體驗證與效益分析
Dynamic Modeling, Entity Validation and Benefit Analysis of PV and PV/T
指導教授: 郭中豐
Chung-Feng Kuo
口試委員: 彭成瑜
none
黃昌群
Chang-Chiun Huang
陳貽評
none
王釿鋊
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 153
中文關鍵詞: 太陽能光電模組太陽能光電熱能複合模組太陽能電池溫升效應動態模型熱傳遞機制能源節約效率評估。
外文關鍵詞: PV, PV/T, solar cell temperature effect, dynamic model, heat transfer mechanism, energy saving efficiency.
相關次數: 點閱:283下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究首先設置實體太陽能光電模組(Photovoltaic Module, PV),可量測電功率,並根據電功率求出發電效率; 再設置實體太陽能光電熱能複合模組(Photovoltaic and Thermal Composite Module, PV/T),可量測電功率及平均水溫,並根據電功率及平均水溫求出發電效率及日平均儲熱效率。
依據PV及PV/T運作時產生的熱傳遞機制,以熱能量守恆定律、總容量法結合Simulink軟體工具,建立PV及PV/T動態模型。對於太陽能光電模組:輸入環境因素(溫度、風速、日照量),預測模組內各層結構動態(隨時間變化)溫度,依據太陽能電池溫度,可得動態發電效率、電功率;對於太陽能光電熱能複合模組:輸入環境因素(環境溫度、風速、日照量),可預測模組內各層結構動態(隨時間變化)溫度,依太陽能電池溫度及平均水溫可得動態發電效率、電功率及日平均儲熱效率。本研究以實體模組驗證模型之準確,並以設置地點環境因素,設計PV及PV/T的最佳結構及最佳輸出性能。
PV/T動態模型與實體驗證顯示:發電效率及電功率誤差小於2.5%、日平均儲熱效率誤差小於1.3%;PV動態模型與實體驗證顯示:發電效率及電功率誤差小於1.3%。證實本研究建立PV及PV/T動態模型可依地點環境因素,準確預測PV及PV/T輸出性能。
本研究利用建立動態模型改善實體太陽能模組輸出性能。PV/T如改善質量流率,發電效率及電功率增加1.397%、日平均儲熱效率增加62.742%;而PV背板材料如使用熱傳導係數較高的玻璃取代傳統熱傳導係數較低的氟化乙烯聚酯共聚物(Tedlar-Polyester-Tedlar, TPT),發電效率及電功率增加2.353%,有效改善太陽能模組輸出性能。
本研究將發電/儲熱效率轉換為能源節約效率,結果顯示PV/T能源節約效率較PV高14.127%,裝設PV/T可有效發揮太陽能效能。


An entitative Photovoltaic Module (PV) is set up for measuring the electric power, and the generating electric efficiency is calculated according to the electric power. An entitative Photovoltaic and Thermal Composite Module (PV/T) is set up for measuring the electric power and average water temperature, and the generating electric efficiency and daily average heat storage efficiency are calculated according to the electric power and average water temperature.
According to the heat transfer mechanism generated during the operation of two solar modules, law of conservation of energy and lumped capacitance method are combined with Simulink software tool to establish the dynamic model of two solar modules.
For PV: environmental factors (temperature, wind speed, solar radiation) are inputted, the dynamic (time-varying) temperature of various layers inside module can be predicted, according to the solar cell temperature,the dynamic electric power and electric efficiency can be obtained.
For PV/T: environmental factors (temperature, wind speed, solar radiation) are inputted, the dynamic (time-varying) temperature of various layers inside module can be predicted, according to solar cell temperature and water temperature change, the dynamic electric power, electric efficiency and daily average heat storage efficiency can be obtained.
This study uses entity module to validate the accuracy of model, and uses the environmental factors of mounting site to design the optimum structure and optimum output performance of two solar modules.
The PV/T dynamic model and entity validation show that electric power and electric efficiency errors are smaller than 2.5%, daily average heat storage efficiency error is smaller than 1.3%. PV shows that electric power and electric efficiency errors are smaller than 1.3%. It is proved that the two dynamic models established in this study can predict the output performance of two solar modules accurately according to the environmental factors of the site.
This study uses the established dynamic model to improve the output performance of entity solar module. When the water flow rate is improved for PV/T, electric power and electric efficiency are increased by 1.397%, daily average heat storage efficiency is increased by 62.742%. The PV backsheet is made of glass with higher thermal conductivity to replace traditional Tedlar-polyester-Tedlar (TPT), electric power and electric efficiency are increased by 2.353%, the output performance of solar module is improved effectively.
In this study, electric efficiency and daily average heat storage efficiency are converted into energy saving efficiency, PV/T is higher than PV by 14.127%, installing PV/T can perform the solar energy effectiveness effectively.

摘要I ABSTRACTIII 致謝V 目錄VI 圖目錄IX 表目錄XIII 符號表XVIII 第1章緒論1 1.1研究背景與動機2 1.2文獻回顧3 1.2.1PV/T3 1.2.2PV及PV/T動態模型6 1.3研究規劃與目的8 1.4論文架構及研究流程圖9 第2章PV及PV/T介紹12 2.1PV及PV/T介紹12 2.1.1PV介紹12 2.1.1.1玻璃蓋板13 2.1.1.2乙烯醋酸乙烯酯共聚物膠膜13 2.1.1.3TPT背板14 2.1.1.4太陽能電池14 2.1.2PV性能介紹15 2.1.3PV/T介紹16 2.1.3.1集熱板17 2.1.3.2集熱管18 2.1.3.3隔熱層18 2.1.4PV/T性能介紹18 2.2Simulink軟體介紹19 第3章研究方法及理論22 3.1熱傳遞分析22 3.1.1熱傳導機制23 3.1.2熱對流機制24 3.1.3熱輻射機制24 3.1.3.1長波長熱輻射25 3.1.3.2短波長熱輻射26 3.1.4總容量法26 3.2熱模型與電路迴路等效轉換27 第4章實驗規劃步驟30 4.1PV/T動態模型建立30 4.1.1熱傳遞機制分析31 4.1.2假設條件建立32 4.1.3熱模型建立33 4.1.4熱模型與電路之等效轉換34 4.1.5聯立微分方程式建立45 4.2實體PV/T建立45 4.3PV動態模型建立47 4.4實體PV建立59 第5章實驗結果61 5.1PV/T動態模型模擬結果與驗證61 5.1.1秋季模擬結果與驗證61 5.1.2冬季模擬結果與驗證69 5.1.3春季模擬結果與驗證76 5.1.4夏季模擬結果與驗證84 5.1.5PV/T動態模型創新性92 5.2改良PV/T模組95 5.3PV動態模型模擬結果100 5.3.1模擬結果與驗證100 5.3.2四季模擬結果104 5.3.3PV動態模型創新性111 5.4改良PV模組116 5.5效益分析118 5.5.1電能性能評估118 5.5.2能源節能效率評估121 5.5.3回收年限、效益及佔地面積分析123 第6章結論126 參考文獻128  

[1]經濟部能源局,「能源統計年報」,經濟部能源局,中華民國,2016。
[2]經濟部技術處,「2015-2016年產業技術白皮書」,經濟部技術處,中華民國,2016。
[3]D. Oliva, E. Cuevas, “Parameter identification of solar cells using artificial bee colony optimization”, Energy 72 (2014) 93-102.
[4]S. Vaclav, “Energy at the crossroads”, Global Perspectives and Uncertainties (2015).
[5]A. R. Jordehi, “Parameter estimation of solar photovoltaic cells: a review”, Renewable and Sustainable Energy Reviews 61 (2016) 354-371.
[6]R. S. Shivalkar, H. T. Jadhav, “Feasibility study for the net metering implementation in rooftop solar PV installations across reliance energy consumers”, Power and Computing Technologies (2015).
[7]A. Makki, S. Omer, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance”, Renewable and Sustainable Energy Reviews 41 (2015) 658-684.
[8]A. Hasan, S. J. McCormack, “Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates”, Solar Energy 115 (2015) 264-276.
[9]J. Kern, MC. Russell, “Combined photovoltaic and thermal hybrid collector system’’, Proceeding of the 13th IEEE PV specialist conference (1979) 1153-1157.
[10]S. A. Hamid, M. Y. Othman, “An overview of photovoltaic thermal combination (PV/T combi) technology”, Renewable and Sustainable Energy Review 38 (2014) 212-222.
[11]B. J. Huang, T. H. Lin, W. C. Hung, and F. S. Sun, “Performance evaluation of solar photovoltaic/thermal systems”, Solar Energy 70 (5) (2001) 443-448.
[12]T. T. Chow, K. F. Fong, “Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover”, Applied Energy 86 (2009) 310-316.
[13]T. T. Chow, K. F. Fong, and Z. Lin, “Annual performance of building integrated photovoltaic/water-heating system for warm climate application”, Applied Energy 86 (2009) 689-696.
[14]P. Dupeyrat, C. Menezo, and C. Rommel, “Efficient single glazed flat plate photovoltaic-thermal hybrid collecter for domestic hot water system”, Solar Energy 85 (2011) 1457-1468.
[15]O. Zogou, H. Stapountzis, “Experimental validation of an improved concept of building integrated photovoltaic panels”, Renewable Energy 36 (2011) 3488-3498.
[16]N. Aste, C. D. Pero, and F. Leonforte, “Thermal-electrical optimization of the configuration a liquid PVT collector”, Energy Procedia 30 (2012) 1-7.
[17]SM. Bambrook, AB. Sproul, “Maximising the energy output of a PVT air system”, Solar Energy 86 (2012) 1857-1871.
[18]M. Herrando, C. N. Markides, “A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: systems performance”, Applied Energy 122 (2014) 288-309.
[19]N. Aste, C. DelPero, and F. Leonforte, “Water flat plate PV thermal collectors: a review”, Solar Energy 102 (2014) 98-115.
[20]P. Xu, X. Zhang, J. Shen, X. Zhao, W. He and D. Li, “Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T) system against conventional photovoltaic (PV) system”, Energy Reports 1 (2015) 30-35.
[21]A. D. Jones, C. P. Underwood, “A thermal model for photovoltaic systems”, Solar Energy 70 (2001) 349-359.
[22]G. Notton, C. Cristofari, “Modeling of a double-glass photovoltaic module using finite differences”, Applied Thermal Engineering 25 (2005) 2854-2877.
[23]A. Tiwari, M. S. Sodha, “Performance evaluation of hybrid PV/thermal water/air heating system: A parametric study”, Renewable Energy 31 (2006) 2460-2474.
[24]N. Aste, C. Giancarlo, “Design, development and performance monitoring of a photovoltaic-thermal (PVT) air collector”, Renewable Energy 33 (2008) 914-927.
[25]Ali Tofighi, “Performance evaluation of PV module by dynamic thermal model”, Journal of Power Technologies 93 (2013) 111-121.
[26]N. Aste, F. Fabrizio, “Design, modeling and performance monitoring of a photovoltaic-thermal (PVT) water collector”, Solar Energy 112 (2015) 85-99.
[27]M. C. Browne, B. Norton, “Phase change materials for photovoltaic thermal management”, Renewable and Sustainable Energy Reviews 47 (2015) 762-782.
[28]G. Ciulla, V. Lo Brano, “A comparison of different one-diode models for the representation of I-V characteristic of a PV cell”, Renewable and Sustainable Energy Reviews 32 (2014) 684-696.
[29]KE. Amori, MA. Abd-AlRaheem, “Field study of various air based photovoltaic/thermal hybrid solar collector”, Renewable Energy 63 (2014) 402-414.
[30]N. Aste, F. Leonforte, “Performance monitoring and modeling of an uncovered photovoltaic-thermal (PV/T) water collector”, Solar Energy 135 (2016) 551-568.
[31]H. Longshu, Q. Zhenhua, “An experimental and simulative study on a novel photovoltaic thermal collector with micro hera pipe array (MHPA-PV/T)”, Energy and Buildings 124 (2016) 60-69.
[32]R. Stropnik, U. Stritih, “Increasing the efficiency of PV panel with the use of PCM”, Renewable Energy 97 (2016) 671-679.
[33]V. Vishal, K. Aarti, “Complementary performance enhancement of PV energy system through thermoelectric generation”, Renewable and Sustainable Energy Reviews 58 (2016) 1017-1026.
[34]沈 輝,曾祖勤,「太陽能光電技術」,中華民國,2010。
[35]至合光電有限公司,「玻璃光譜透光率」,至合光電有限公司,中華民國,2012。
[36]中國塑料加工工業協會,「中國塑料」,中華民國,2016。
[37]A. R. Jordehi, “Parameter estimation of solar photovoltaic (PV) cells: A review”, Renewable and Sustainable Energy Reviews 61 (2016) 354-371.
[38]R. Mishra, G. Tiwari, “Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode”, Solar Energy 90 (2013) 58-67.
[39]M. Jee Joe, S. Iniyan, “Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide-water nanofluid”, Solar Energy 119 (2015) 439-451.
[40]Y. Tiana, C. Y. Zhaob, “A review of solar collectors and thermal energy storage in solar thermal applications”, Applied Energy 104 (2013) 538-553.
[41]S. Suman, M. K. Khan, and M. Pathak, “Performance enhancement of solar collectors—a review”, Renewable and Sustainable Energy Reviews 49 (2015) 192-210.
[42]S. K. Verma, A. K. Tiwari, “Progress of nanofluid application in solar collectors: a review”, Energy Conversion and Management 100 (2015) 324-346.
[43]A. C. Medale, M. Abid, “Optimization of the design of a polymer flat plate solar collector”, Solar Energy 87 (2013) 64-75.
[44]李 祥,「熱傳學分析」,中華民國,2010。
[45]侯順雄,王浩松,「熱傳遞」,中華民國,2013。
[46]G. N. Tiwari, R. K. Mishra, “Photovoltaic modules and their applications: a review on thermal modelling”, Applied Energy 88 (2011) 2287-2304.
[47]J. P. Holman, “Heat Transfer”, Science & Tech (1992).
[48]K. E. Anders Ohlsson, O. Ronny, “Dynamic model for measurement of convective heat transfer coefficient at external building surfaces”, Journal of Building Engineering 7 (2016) 239-245.
[49]H. Pierrick, M. Christophe, “Dynamic numerical model of a high efficiency PV-T collector integrated into a domestic hot water system”, Solar Energy 111 (2015) 68-81.
[50]T. G. Burke, D. R. Schiller, “Using pspice for electrical heat analysis”, IEEE Potentials 22 (2003) 35-38.
[51]A. I. Kudish, E. G. Evseev, “Simulation study of a solar collector with a selectively coated polymeric double walled absorber plate”, Energy Conversion and Management 43 (2002) 651-671.
[52]R. K. Koech, H. O. Ondieki, and J. K. Tonui, “A steady state thermal model for photovoltaic/thermal (PV/T) system under various conditions”, International Journal of Scientific & Technology Research 1 (2012) 2277-8616.
[53]M. Z. Rashid, J. M. Keerio, “Simulation of combined photovoltaic, thermal & biogas hybrid system”, International Journal of Electrical & computer science 12 (2012) 84-89.
[54]L. Maifi, A. Chari, “Study and modelling of a photovoltaic thermal hybrid solar collector with cylindro-parabolic concentrator”, Conference International des Energies Renouvelables Sousse 2 (2013) 2356-5608.
[55]D. R. Mattia, R. Giorgio, “Dynamic thermal model for hybrid photovoltaic panels”, Energy Procedia 81 (2015) 345-353.
[56]N. C. Annis, “Performance analysis and modelling of hybrid photovoltaic-thermal solar panels”, Doctoral Dissertations (2015).
[57]N. Pandiarajan, R. Muthu, “Mathematical modeling of photovoltaic module with simulink”, International Conference on Electrical Energy Systems (2011) 314-319.
[58]N. A. Rahim, H. W. Ping, “Photovoltaic module modeling using Simulink/matlab”, Procedia Environmental Sciences 17 (2013) 537-546.
[59]H. Bellia, R. Youcef, “A detailed modeling of photovoltaic module using matlab”, Journal of Astronomy and Geophysics 3 (2014) 53-61.
[60]X. H. Nguyen, “Mathematical modeling of photovoltaic cell/module/arrays with tags in matlab/Simulink”, Environmental System Research (2015).
[61]T. Khatib, W. Elmenreich, “Modeling of photovoltaic systems using matlab: simplified green codes”, (2016).
[62]J. S. Coventry, K. Lovegrove, “Development of an approach to compare the value of electrical and thermal output from a domestic PV/thermal system”, Solar Energy 75 (2003) 63-72.

QR CODE