簡易檢索 / 詳目顯示

研究生: 陳欣妤
Hsin-yu Chen
論文名稱: 高效率拉丁方陣低密度 奇偶檢查碼解碼器之實現
High Effciency Decoder Implementation of Latin Squares LDPC Codes
指導教授: 韓永祥
Yunghsiang S. Han
口試委員: 張立中
Li-Chung Chang
曾德峰
Der-Feng Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 44
中文關鍵詞: 拉丁方陣低密度 奇偶檢查碼解碼器
外文關鍵詞: Latin Squares
相關次數: 點閱:403下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

論文實現一個以拉丁方陣(Latin Square)所建構而成且編碼率(Code Rate)為0.89的(9242,8240)低密度奇偶檢查碼的解碼器硬體電路,並於數種已知的低密度奇偶檢查碼的演算碼中選用位元節點為中心之循序排程演算法(Variable-node-centric Sequential Scheduling,VSS)來降低演算法的硬體複雜度。此演算法屬於一種分組曳步解碼的演算法,也就是結合並行與串列的解碼方式,相較於傳統二階層的Min-Sum演算法硬體架構,可以有效的減少解碼的疊代次數並降低線路的複雜度,並且在解碼器中的檢查節點單元與位元節點單元也可以被有效的簡化以降低硬體成本。本論文於工作頻率100MHz與20次解碼疊代次數下使用TSMC180nm製程來進行合成,而此電路的最高吞吐量為1.03Gbps。


This thesis realizes the hardware architecture of the LDPC decoder, where the (9241,8240) LDPC code is constructed based on the Latin Square with code rate 0.89. The variable-node-centric sequential scheduling (VSS) technology is adopted to reduce hardware complexity and utilization efficiently. In contrast to the traditional Min-Sum decoder, the proposed VSS technology not only reduces the iteration times, but also hardware implementation cost and complexity of routing network. By using TSMC180nm CMOS technology to implement decoder, the maximum throughput can achieve 1.03 Gbps under operating frequency of 100 MHz with 20 iterations.

摘要 I Abstract II 第一章 簡介 1 1.1 錯誤誤控制碼 1 1.2 低密度奇偶檢查碼 3 1.3 快閃記憶體與其可靠性 6 1.4 動機 11 第二章 提出硬體架構方法 13 2.1 低密度奇偶檢查碼之建構 13 2.2 解碼演算法 17 2.2.1 總和-乘積演算法 18 2.2.2 最小值-總和演算法 19 2.2.3 位元節點為中心之循序排程演算法 21 2.2.4 解碼演算法模擬結果 24 2.3 低密度奇偶檢查碼解碼器架構 26 2.3.1 時序控制 27 2.3.2 位元節點單元 30 2.3.3 檢查節點單元 31 2.3.4 繞線網路 33 第三章 模擬與實驗結果 35 3.1 實驗環境與軟體模擬 35 3.2 硬體實現結果 37 第四章 結論 39 4.1 結論 39 4.2 未來目標 40

[1] S. Lin and D. J. Costello, Error Control Coding, Prentice-Hall, Second Edition (2004)
[2] R. G. Gallager , Low-Density Parity-Check Codes, Cambridge, MA, MIT Press (1963)
[3] Heller J., and Jacobs I., Viterbi Decoding for Satellite and Space Communication, IEEE Transactions on Communication Technology, Volume: 19, Issue: 5, Part: 1(1971)
[4] D. J. MacKay and R.M. Neal, Near Shannon limit performance of low density
parity check codes, Electronics Letters, Vol. 33, Issue. 6, pp. 457-458, (1997)
[5] M. C. Davey and D. J. MacKay, Low density parity check codes over GF(q),
IEEE Communications Latters, Vol. 2, Issue. 6, pp. 165-167, (1998)
[6] D. J. MacKay, Good error-correcting codes based on very sparse matrices ,
IEEE Transactions on Information Theory, Vol. 45, Issue. 2, pp.399-431 (1999)
[7] N. Alon and M. Luby, A linear time erasure-resilient code with nearly optimal
recovery, IEEE Transactions on Information Theory, Vol. 42, Issue. 6,
pp. 1732-1736 (1996)
[8] J.W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, A digital fountain
approach to reliable distribution of bulk data, Proceedings of the
ACMSIGCOMM conference on Applications, technologies, architectures, and protocols for Computer Communication, pp. 56-57, (1998)
[9] W.E. Ryan and S. Lin, Channel Codes: Classical and Modern, Cambridge University Press, New York (2009)
[10] R. Micheloni, A. Marelli and R. Ravasio, Error Correction Codes for Non-Volatile Memories, Springer, (2008)
[11] Kai Zhang, Xinming Huang, and Zhongfeng Wang, High-throughput layered
decoder implementation for quasi-cyclic LDPC codes, IEEE Journal on
Selected Areas in Communications, Volume: 27, Issue: 6(2009)
[12] John P. Uyemura , and John Paul Uyemura, Introduction to VLSI Circuits and
Systems, Wiley(2001)
[13] Zion Kwok, and Scott Nelson, LDPC Test Methodology ,Intel (2011)
[14] Li Zhang, Qin Huang, Shu Lin, Abdel-Ghaffar, K., and Blake, I.F., Quasi-Cyclic LDPC Codes: An Algebraic Construction, Rank Analysis, and Codes on Latin Squares, IEEE Transactions on Communications, Volume:58, Issue: 11(2010)
[15] Yu Cai, Erich F. Haratsch, Onur Mutlu and Ken Mai, Threshold voltage
distribution in MLC NAND flash memory: Characterization, Analysis, and
Modeling, Proceedings of the Conference on Design, Automation and Test in
Europe, pp. 1285-1290 (2013)
[16] Heller J., and Jacobs I., Viterbi Decoding for Satellite and Space
Communication, IEEE Transactions on Communication Technology, Volume:
19, Issue: 5, Part: 1(1971)
[17] Ting-Yuan Kung, LDPC Decoder Architecture Using Variable-node-centric
Sequential Scheduling Algorithm, Master thesis, National Taiwan
University of Science and Technology, Taipei, Taiwan(2012)
[18] Chun-Jen Yu, Decoder Implementation of Latin Squares LDPC Codes , Master thesis, National Taiwan University of Science and Technology, Taipei, Taiwan(2013)
[19] Chung-Chieh Lin, Decoder Implementation of SFT LDPC Codes, Master
thesis, National Taiwan University of Science and Technology, Taipei,
Taiwan(2013)
[20] Yeh-Hsiang Chen, Encoder Implementation of SFT LDPC Codes , Master
thesis, National Taiwan University of Science and Technology, Taipei,
Taiwan(2013)
[21] Lan Lan, Lingqi Zeng, Tai Y.Y., Lei Chen, Shu Lin, and Abdel-Ghaffar K.,”
Construction of Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure
Channels: A Finite Field Approach,” IEEE Transactions on Information
Theory, Volume:53 , Issue: 7 (2007)

[22] Kin-Chu Ho, “Design and Implementation of a (9153,8256) LDPC Decoder
with 2-bit Soft Input for NAND Flash Memory,” Master thesis, National
Chiao Tung University, Hsinchu, Taiwan (2010)

無法下載圖示 全文公開日期 2019/06/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE