簡易檢索 / 詳目顯示

研究生: 王理恩
Li-En Wang
論文名稱: 基於背向雷利散射之窄線寬光纖雷射研製及其應用分析
Implementation and Analysis of Narrow-Linewidth Fiber Laser Based on the Rayleigh Back-scattering
指導教授: 廖顯奎
Shien-Kuei Liaw
宋峻宇
Jiun-Yu Sung
口試委員: 單秋成
Chow-Shing Shin
游易霖
Yi-Lin Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 85
中文關鍵詞: 窄線寬光纖雷射光纖通訊背向雷利散射單縱模頻域分析
外文關鍵詞: Narrow linewidth, Optical fiber laser, Optical fiber communication, Rayleigh backscattering, Single longitudinal mode, Spectral analysis
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨為闡述窄線寬光纖雷射之研製,首先經由實驗量測去決定自製雷射的各項參數,決定使用前向泵激,泵激光源波段為980nm,摻鉺光纖長度為12m,光柵波段為1551.95nm,反射率為98.34%,光耦合元件選用90:10,並且在背向雷利散射的原理下,加入一段120m的單模光纖,與光衰減器和反射鏡,不僅能使得線寬縮窄,也能夠藉由調整光衰減器,讓原來的多模的情況達到單縱模輸出,實驗結果中顯示,以上參數所能得到的功率與信噪比為2.816 mW與59.86 dB,接著第二個部分講述線寬量測架構之參數設置,主要需要設置上半部為聲光調變器而下半部為單模光纖長度,在聲光調變器的設定中,先給予電壓24V,電流0.8A,接著調整脈波產生器,輸出一個脈衝寬度為100ns,脈衝重複率為1ms(1kHz)的數位訊號,振幅設定為2.3V。另一個部分則利用相干長度公式去決定單模光纖所需要的長度,經過計算後雷射的相干長度約為66km,並決定使用3捆25km,總長75km的延遲光纖,而在建置完後實際量測四種不同線寬之雷射,得到的實驗結果分別為2.6kHz,1.35MHz與1.69MHz,而本論文重點量測窄線寬光纖雷射之線寬為4.176kHz,在確認雷射的線寬後,最後一部分講述窄線寬光纖雷射量測其光纖通訊架構下之數值,並加入濾波器將原來SNR只有40.14dB,提升至58.64 dB,此數值與原訊號相差不遠,改善通訊架構後,測試在PRBS7的情況下傳輸10 Gbit/s時的誤碼率,目的為比較不同線寬其誤碼之差異,以線寬2.6kHz雷射為基準實驗結果顯示,功率在-18dBm時有著10-11之誤碼率,而可調式雷射光源與陣列雷射在10-9功率償付之值分別為0.87dB和1.48dB,以及窄線寬光纖雷射則有著2.33dB之功率償付。


    The main purpose of this thesis is to explain the development of a narrow linewidth fiber laser. The forward pump laser source has a wavelength of 980 nm, and an erbium-doped fiber length of 12 m is used in this thesis. A fiber grating with 1551.95 nm and 98.34% reflectivity is used. The optical coupler is selected as 90:10, a section of 120 m single-mode fiber is added under the principle of Rayleigh backscattering, with an optical attenuator and a reflector, it can narrow the line width and adjust the optical attenuator to achieve single-mode output in the multi-mode situation. The experimental results show that the power and signal-to-noise ratio that can be obtained with the above parameters are 2.816 mW and 59.86 dB, respectively. It is necessary to set the upper half of the acousto-optic modulator and the lower half of the single-mode fiber length for the linewidth measurement architecture parameter setting. The acousto-optic modulator is using 24 Volt of electrical power and 0.8 Ampere of current. While the pulse generator is adjusted to a digital signal output with a pulse width of 100 ns and a pulse repetition rate of 1 ms (1 kHz) with 2.3 Volt of amplitude. The other part uses the coherence length formula to determine the required length of the single-mode fiber. The length of the delay fiber needs to be greater than the coherence length of the laser. The two optical paths of the upper half and the lower half have similar linewidths, and they can be regarded as two similar laser sources. It is used as interference to detect the electrical signal to analyze its linewidth. Therefore, after calculation, the coherence length of the laser is about 66km. Finally, it is decided to use 3 bundles of 25 km delay fiber with a total length of 75 km. After measuring four different linewidth lasers, the experimental results obtained are 2.6kHz and 1.35MHz and 1.69MHz, respectively and this paper focuses on measuring the linewidth of the narrow linewidth fiber laser as 4.176 kHz. After confirming the laser linewidth, the last part describes the value of the narrow linewidth fiber laser measurement under the optical fiber communication architecture, adding a filter to increase the original SNR from 40.14 dB to 58.64 dB. This value is not far from the original signal. After improving the communication architecture, the bit error rate is evaluated using 10 Gbit/s under PRBS7 based on the line width 2.6kHz laser. It can obtain the 10-11 bit error rate at -18dBm of optical power. The compensation values in 10-9 of the adjustable laser light source and the array laser are 0.87dB and 1.48dB, respectively, and the narrow linewidth fiber laser has a 2.33 dB of power compensation.

    摘要........................................................................................................................................I Abstract ............................................................................................................................... II 致謝.....................................................................................................................................IV 目錄...................................................................................................................................... V 圖目錄............................................................................................................................... VII 表目錄.................................................................................................................................IX 第一章 緒論......................................................................................................................... 1 1.1 前言........................................................................................................................ 1 1.2 研究動機................................................................................................................ 2 1.3 論文架構................................................................................................................ 3 第二章 光纖雷射原理......................................................................................................... 4 2.1 摻鉺光纖雷射架構................................................................................................ 4 2.2 摻鉺光纖雷射基礎原理........................................................................................ 5 2.2.1 摻鉺光纖雷射............................................................................................. 5 2.2.2 摻鉺光纖放大原理..................................................................................... 6 2.2.3 摻鉺光纖雷射原理..................................................................................... 8 2.3 布拉格光纖光柵.................................................................................................. 10 2.4 窄線寬光纖雷射線寬壓縮理論分析.................................................................. 12 2.5 雷射線寬量測方法.............................................................................................. 16 2.5.1 法布理-佩羅干涉儀(Fabry–Pérot interferometer)............................. 16 2.5.2 外差檢測(Heterodyne Detection) ........................................................... 17 2.5.3 延遲自內差檢測(Delayed Self-Homodyne Detection) .......................... 19 2.5.4 延遲自外差檢測(Delayed Self-Heterodyne Detection)......................... 20 2.6 文獻探討.............................................................................................................. 23 第三章 窄線寬光纖雷射基礎實驗................................................................................... 24 3.1 架構建置與參數選擇.......................................................................................... 24 3.1.1 雷射參數設定........................................................................................... 24 3.1.2 摻鉺光纖參數........................................................................................... 26 3.2 光纖雷射實驗架設與量測.................................................................................. 28 3.2.1 環形光纖雷射基礎架構特性量測........................................................... 28 3.2.2 環形光纖雷射特性量測........................................................................... 29 3.2.3 窄線寬光纖雷射特性量測....................................................................... 32 3.2.4 光耦合元件實驗結果比較....................................................................... 35 3.2.5 前向與後向泵激實驗結果比較............................................................... 36 第四章 窄線寬光纖雷射線寬量測................................................................................... 38 4.1 線寬量測架構...................................................................................................... 38 4.1.1 線寬架構參數選擇................................................................................... 38 4.2 線寬實驗.............................................................................................................. 45 4.2.1 商用窄線寬雷射基礎量測....................................................................... 45 4.2.2 商用窄線寬雷射線寬量測....................................................................... 47 4.2.3 可調式雷射光源線寬量測....................................................................... 48 4.2.4 陣列雷射線寬量測................................................................................... 49 4.2.5 窄線寬光纖雷射線寬量測....................................................................... 50 5.1 光通訊相關參數.................................................................................................. 55 5.1.1 眼圖........................................................................................................... 55 5.1.2 誤碼率....................................................................................................... 56 5.1.3 編碼與偽隨機二進制數列....................................................................... 57 5.2 通訊量測架構...................................................................................................... 58 5.2.1 通訊架構功率量測................................................................................... 58 5.2.2 通訊架構誤碼率量測............................................................................... 60 第六章 結論與未來展望................................................................................................... 65 6.1 結論...................................................................................................................... 65 6.2 未來展望.............................................................................................................. 66 參考文獻............................................................................................................................. 67

    D. P. Dai, Y. Xia, Y. N. Yin, X. X. Yang, Y. F. Fang, X. J. Li, and J. P. Yin, “A
    linewidth-narrowed and frequency-stabilized dye laser for application in laser
    cooling of molecules,” Optics Express, vol. 22, no. 23, pp. 28645-28652, 2014.
    [2] B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, ...
    & Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz
    level,” Nature Photon, vol. 9, no. 7, pp. 456-460, 2015.
    [3] M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, & C. Karlsson, “The role
    of laser coherence length in continuous-wave coherent laser radar,” Journal of
    Modern Optics, vol. 45, no. 8, pp. 1567-1581, 1998.
    [4] H. Edner, A. Sunesson, and S. Svanberg, “NO plume mapping by laser-radar
    techniques,” Optics Letters, vol. 13, no. 9, pp. 704-706, 1988.
    [5] J. O'Carroll, R. Phelan, B. Kelly, T. N. Huynh, B. Cardiff, F. Smyth, ... & L. P.
    Barry, “Narrow-linewidth discrete-mode laser diodes for coherent
    communication applications,” IEEE/OSA Journal of Optical Communications
    and Networking, vol. 4, no. 9, pp. A90-A96, Sept. 2012.
    [6] L. Kazovsky, “Performance analysis and laser linewidth requirements for optical
    PSK heterodyne communications systems,” Journal of Lightwave Technology,
    vol. 4, no. 4, pp. 415-425, April 1986.
    [7] T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed
    vibration sensing with high frequency response and spatial resolution,” Optics
    Express, vol. 21, no. 3, pp. 2953-2963, 2013.
    [8] A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M.
    Notcutt, ... & J. Ye, “Systematic study of the Sr 87 clock transition in an optical
    lattice,” Physical Review Letters, vol. 96, no. 3, 2006.68
    [9] N. C. Pixley, T. L. Correll, D. Pappas, O. I. Matveev, B. W. Smith, and J. D.
    Winefordner, “Tunable resonance fluorescence monochromator with
    sub-Doppler spectral resolution,” Optics Letters, vol. 26, no. 24, pp. 1946-1948,
    2001.
    [10] B. Daino, P. Spano, M. Tamburrini and S. Piazzolla, “Phase noise and spectral
    line shape in semiconductor lasers,” IEEE Journal of Quantum Electronics, vol.
    19, no. 3, pp. 266-270, March 1983.
    [11] Y. Yamamoto, T. Mukai, & S. Saito, “Quantum phase noise and linewidth of a
    semiconductor laser, ” Electronics Letters, vol. 17, no. 9, pp. 327-329 1981.
    [12] M. Fleming and A. Mooradian, “Spectral characteristics of external-cavity
    controlled semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. 17,
    no. 1, pp. 44-59, January 1981.
    [13] K. Okada, K. Hashimoto, T. Shibata, and Y. Nagaki, “Novel method for high
    resolution measurement of laser output spectrum,” Electronics Letters, vol. 16,
    no. 16, pp. 630, 1980.
    [14] A. Canagasabey, A. Michie, J. Canning, J. Holdsworth, S. Fleming, H. C. Wang,
    & M. L. Åslund, “A comparison of delayed self-heterodyne interference
    measurement of laser linewidth using Mach-Zehnder and Michelson
    interferometers,” Sensors, vol. 11, no. 10, pp. 9233-9241, 2011.
    [15] X. Chen, M. Han, Y. Zhu, B. Dong, and A. Wang, “Implementation of a
    loss-compensated recirculating delayed self-heterodyne interferometer for
    ultranarrow laser linewidth measurement,” Applied Optics, vol. 45, no. 29, pp.
    7712-7717, 2006.
    [16] M. Han, A. Wang, “Analysis of a loss-compensated recirculating delayed
    self-heterodyne interferometer for laser linewidth measurement,” Applied
    Physics B, vol. 81, no. 1, pp. 53-58, 2005.69
    [17] J. W. Dawson, N. Park and K. J. Vahala, “An improved delayed self-heterodyne
    interferometer for linewidth measurements,” IEEE Photonics Technology Letters,
    vol. 4, no. 9, pp. 1063-1066, Sept. 1992.
    [18] L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth
    measurements,” Journal of Lightwave Technology, vol. 9, no. 4, pp. 485-493,
    April 1991.
    [19] K. Kikuchi, “Effect of 1/f-type FM noise on semiconductor-laser linewidth
    residual in high-power limit,” IEEE Journal of Quantum Electronics, vol. 25, no.
    4, pp. 684-688, April 1989.
    [20] K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical
    communications,” Electronics Letters, vol. 23, no. 17, pp. 885-887, 1987.
    [21] P. Yu, “A novel scheme for hundred-hertz linewidth measurements with the
    self-heterodyne method,” Chinese Physics Letters, vol. 30, no. 8, 2013.
    [22] H. Ludvigsen, M. Tossavainen, & M. Kaivola, “Laser linewidth measurements
    using self-homodyne detection with short delay,” Optics Communications, vol.
    155, no. 1-3, pp. 180-186, 1998.
    [23] L. Richter, H. Mandelberg, M. Kruger and P. McGrath, “Linewidth
    determination from self-heterodyne measurements with subcoherence delay
    times,” IEEE Journal of Quantum Electronics, vol. 22, no. 11, pp. 2070-2074,
    November 1986.
    [24] Y. Li, L. Huang, L. Gao, T. Lan, Y. Cao, I. P. Ikechukwu, L. Shi, Y. Liu, F. Li,
    and T. Zhu, “Optically controlled tunable ultra-narrow linewidth fiber laser with
    Rayleigh backscattering and saturable absorption ring,” Optics Express, vol. 26,
    no. 21, 2018.70
    [25] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, & R. O. Carlson ,
    “Coherent light emission from GaAs junctions,” Physical Review Letters, vol. 9,
    no. 9, pp. 366, 1962.
    [26] T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter,
    & H. J. Zeigler, “Semiconductor maser of GaAs,” Applied Physics Letters, vol.
    1, no. 4, pp. 91-92, 1962.
    [27] N. Holonyak Jr, & S. F. Bevacqua, “Coherent (visible) light emisson from
    Ga(As1−xPx ) junction,” Applied Physics Letters, vol. 1, no. 4, pp. 82-83, 1962.
    [28] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers:
    fundamentals and technology,” San Diego, USA: Academic Press, 1999
    [29] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling,
    and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics
    in Quantum Electronics, vol. 3, no. 4, pp. 991-1007, Auggust 1997.
    [30] 王祥, “線性形單縱模光纖雷射的研製,” 國立臺灣科技大學碩士論文,
    2010。
    [31] Y. Zhao, C. Yu, & Y. Liao, “Differential FBG sensor for temperaturecompensated high-pressure (or displacement) measurement,” Optics & Laser
    Technology, vol. 36, no. 1, pp. 39-42, 2004.
    [32] I. L. Fabelinskii, “Molecular scattering of light,” Springer Science & Business
    Media, 2012.
    [33] K. F. Renk, “Basics of laser physics,” Berlin: Springer Berlin Heidelberg, 2012.
    [34] T. F. Heinz, “Rayleigh scattering spectroscopy,” Carbon Nanotubes, pp. 353-369,
    2007.
    [35] K. Tajima, “Low-loss optical fibers realized by reduction of Rayleigh scattering
    loss,” OFC '98. Optical Fiber Communication Conference and Exhibit.71
    Technical Digest. Conference Edition. 1998 OSA Technical Digest Series Vol.2
    (IEEE Cat. No.98CH36177), 1998, pp. 305-306
    [36] R. A. Dobbins and C. M. Megaridis, “Absorption and scattering of light by
    polydisperse aggregates,” Applied Optics, vol. 30, no. 33, pp. 4747-4754, 1991.
    [37] T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, & K. Chiang, “Rayleigh
    backscattering: a method to highly compress laser linewidth,” Chinese Science
    Bulletin, vol. 59, no. 33, pp. 4631-4636, 2014.
    [38] D. Derickson, “Fiber optic test and measurement,” Fiber optic test and
    measurement /edited by Dennis Derickson. Upper Saddle River, 1998.
    [39] 陳方元, “基于受激瑞利散射的窄線寬光纖激光器實驗研究,” 重慶大學,
    2013.
    [40] H. A. Haus and W. Huang, “Coupled-mode theory,” Proceedings of the IEEE,
    vol. 79, no. 10, pp. 1505-1518, October 1991.
    [41] J. P. von der Weid, R. Passy and N. Gisin, “Mid-range coherent optical
    frequency domain reflectometry with a DFB laser diode coupled to an external
    cavity,” Journal of Lightwave Technology, vol. 13, no. 5, pp. 954-960, May
    1995.
    [42] 楊坤璋, “使用飽和吸收體之單模窄頻光纖雷射,” 國立交通大學碩士論文,
    2004.
    [43] 游易霖, “長波長環型摻鉺光纖雷射特性分析與優化,” 國立台灣科技大學碩
    士論文, 2009.
    [44] Y. Xu, L. Zhang, L. Chen, and X. Bao, “Single-mode SOA-based
    1kHz-linewidth dual-wavelength random fiber laser,” Optics Express, vol. 25,
    no. 14, pp. 15828-15837, 2017.
    [45] K. Zhou, Q. Zhao, X. Huang, C. Yang, C. Li, E Zhou, X. Xu, K. K.Y. Wong, H.
    Cheng, J. Gan, Z. Feng, M. Peng, Z. Yang, and S. Xu, “kHz-order linewidth72
    controllable 1550 nm single-frequency fiber laser for coherent optical
    communication,” Optics Express, vol. 25, no. 17, pp. 19752-19759, 2017.
    [46] G. Yin, B. Saxena, and X. Bao, “Tunable Er-doped fiber ring laser with single
    longitudinal mode operation based on Rayleigh backscattering in single mode
    fiber,” Optics Express, vol. 19, no. 27, pp. 25981-25989, 2011.
    [47] T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable
    dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh
    backscattering,” Optics Express, vol. 24, no. 2, pp. 1324-1330, 2016.
    [48] T. Zhu, F. Y. Chen, S. H. Huang, & X. Y. Bao, “An ultra-narrow linewidth fiber
    laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Physics
    Letters, vol. 10, no. 5, 2013.
    [49] A. H. Ali, & S. N. Abdul-Wahid, “Analysis of self-homodyne and delayed
    self-heterodyne detections for tunable laser source linewidth
    measurements,” IOSR J. Eng, vol. 2, no. 10, pp. 1-6, 2012.
    [50] Z. Wang, C. Ke, Y. Zhong, C. Xing, H. Wang, K. Yang, S. Cui, and D. Liu,
    “Ultra-narrow-linewidth measurement utilizing dual-parameter acquisition
    through a partially coherent light interference,” Optics Express, vol. 28, no. 6, pp.
    8484-8493, 2020.
    [51] S. Huang, T. Zhu, M. Liu, & W. Huang, “Precise measurement of ultra-narrow
    laser linewidths using the strong coherent envelope,” Scientific reports, vol. 7,
    no. 1, pp. 1-7, 2017.
    [52] 許安鋒, “同調檢測之相位靈敏光時域反射儀研究與設計,” 國立台灣科技大
    學碩士論文, 2021.
    [53] S. B. Alexander, Optical communication receiver design. Bellingham, WA: SPIE
    Optical Engineering Press, 1997.73
    [54] 黃凡修, “10Gb/s 光纖通訊系統傳送/接收電路 模擬與實作,” 國立中央大學
    碩士論文, 2002.
    [55] J. Bodnar, J. Candoré, J. Nicolas, and D. Caron, “Random photothermal
    thermography: Principle and examples of applications,” Proceedings of the 2010
    International Conference on Quantitative InfraRed Thermography, July 2010.
    [56] 劉曄, “雙向和三向高速光傳輸系統之設計、量測與分析,” 國立台灣科技大
    學碩士論文, 2020.

    無法下載圖示 全文公開日期 2026/08/05 (校內網路)
    全文公開日期 2026/08/05 (校外網路)
    全文公開日期 2026/08/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE