簡易檢索 / 詳目顯示

研究生: 鄧宇旻
Yu-min Teng
論文名稱: 外裝型氣罩的氣動力改良
Improving Performance of an Exterior Suction Hood by Flow Control Method
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 許清閔
none
陳佳堃
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 121
中文關鍵詞: 外裝型氣罩氣動力改良
外文關鍵詞: Exterior Suction Hood, Performance of Hood
相關次數: 點閱:247下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究對傳統外裝型氣罩以及四種傳統氣罩的變化形式進行實驗研究。使用雷射輔助煙霧可視化技術,探討各種形式氣罩的流動型態與氣動力特性;使用追蹤氣體(SF6)濃度偵測法,量測氣罩的洩漏程度。流場可視化的結果顯示,在環境無干擾氣流時,傳統外裝型氣罩在吸氣流量為10.5 m3/min以上,觀察不到明顯的煙霧洩漏。但是因為在實際操作時,環境中少有無干擾氣流的條件,所以經由分子擴散與紊流飄散的洩漏可能存在。另外四種傳統氣罩變化形式之流場可視化結果顯示,在傳統氣罩兩側加上具有邊界層控制器之側板時,在吸氣量10.5 m3/min時,流場結構非常的穩定,而且迴流區以及邊界層分離點存在於氣罩內側,不只無煙霧洩漏,而且對抗干擾氣流影響的能力大增。其他三種傳統氣罩的變化形式,因為只在傳統氣罩兩側加上不同尺寸的側板而入口處無邊界層控制器,因此在側板入口處即形成大範圍的迴流區,邊界層分離點存在於側板入口處,所以煙霧極容易藉著分子擴散以及紊流飄散而洩漏至環境中,更容易受到外界干擾氣流的影響而洩漏。追蹤氣體濃度測試結果顯示,在吸氣流量為10.5 m3/min時,傳統氣罩周遭的平均及最大洩漏濃度分別為0.016 ppm以及0.243 ppm;在傳統氣罩兩側加上不同尺寸的側板而入口處無邊界層控制器時,周遭的平均及最大洩漏濃度分別為1.646 ppm以及55.111 ppm;在傳統氣罩兩側加上具有邊界層控制器之側板時,周遭的平均及最大洩漏濃度分別為0.013 ppm以及0.076 ppm。在吸氣流量為15 m3/min時,傳統氣罩周遭的平均及最大洩漏濃度分別為0.037 ppm以及0.995 ppm;在傳統氣罩兩側加上不同尺寸的側板而入口處無邊界層控制器時,周遭的平均及最大洩漏濃度分別為0.012 ppm以及0.240 ppm;在傳統氣罩兩側加上具有邊界層控制器之側板時,周遭的平均及最大洩漏濃度分別為0.006 ppm以及0.026 ppm。顯然,在低吸氣量(10.5 m3/min)時,只在傳統氣罩兩側加上不同尺寸的側板而入口處無邊界層控制器時,追蹤氣體的平均與最大洩漏量反而比傳統氣罩增加非常多;在傳統氣罩兩側加上具有邊界層控制器之側板時的平均洩漏濃度與傳統氣罩的數值相當,這是因為環境幾近無擾動的原故。但是傳統氣罩的最大洩漏濃度比傳統氣罩兩側加上具有邊界層控制器之側板時的最大濃度高很多,顯示傳統氣罩的氣流不穩定度比傳統氣罩兩側加上具有邊界層控制器之側板大。在高吸氣量(15 m3/min)時,傳統氣罩兩側加上具有邊界層控制器之側板時的平均與最大洩漏濃度(分別為0.006 ppm與0.026 ppm)遠低於傳統氣罩的平均與最大洩漏濃度(分別為0.037 ppm與0.995 ppm),這是因為在高吸氣量時,紊流引致的不穩定性使得傳統氣罩的洩漏增加。但是,傳統氣罩兩側加上具有邊界層控制器之側板的洩漏仍就非常的低。


Flow patterns and tracer-gas concentration leakage levels of a conventional and four modified suction hoods were experimentally study. Laser-light sheet assisted flow visualization technique was used to diagnose the flow patterns. The tracer-gas (Sulfur hexafluoride,SF6) concentration detection method was used to quantify the containment leakages of the hoods. Under the condition of no cross draft, no severe leakage of oil fumes was observed when the conventional suction hood was operated at a suction flow rate of 10.5 m3/min. However, previous studies indicated that the conventional hood presented severe leakage because cross draft existed in almost all the working areas. The hood installed with side flat plates presented severe leakages because boundary-layer separation occurred at the leading edge of the plates and formed large recirculation bubbles. The hood installed with side guard plates with boundary-layer separation controllers (bsc) arranged at the leading edges of the plates showed stable flow field. No oil fume leakages were observed at the inlet because the separation points of boundary layers were postponed rearward in the hood. At the low flow rate 10.5 m3/min, the average and maximum SF6 leakage concentrations of the conventional hood were 0.016 and 0.243 ppm, respectively. The corresponding leakage values of the hood installed with side plates were 1.646 and 55.111 ppm, respectively. The hood installed with bsc showed relatively smallest leakage values—0.013 and 0.076 ppm, respectively. At the medium flow rate 15 m3/min, the average and maximum SF6 leakage concentrations of the conventional hood were 0.037 and 0.995 ppm, respectively. The corresponding leakage values of the hood installed with side plates were 0.012 and 0.240 ppm, respectively. The hood installed with bsc showed negligibly small leakage values—0.006 and 0.026 ppm, respectively. Obviously, installing side plates without boundary-layer separation controllers would induce large containment leakages when compared with the conventional hood. By arranging the boundary-layer separation controllers to the side plates, the leakage levels were significantly decreased—negligibly small values were obtained. These results were corresponding to those of flow visualization.

摘要……………………………………………………………………………………..i Abstract …………………………………………………………………………..……iii 目錄…………………………………………………………………………………….v 符號索引 vii 表圖索引 viii 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 第二章 實驗設備與方法 7 2.1實驗設備 7 2.1.1 傳統外裝型氣罩設備架構 7 2.1.2 邊界層控制器 7 2.1.3 改良後外裝型氣罩 8 2.1.4 抽氣機 9 2.1.5 熱板 9 2.1.6 煙霧微粒產生系統與微粒特性 9 2.1.7 六氟化硫釋放器 11 2.1.8 濃度取樣探頭 12 2.1.9 雷射光頁產生器 12 2.1.10 數位攝影機 12 2.2量測儀器 13 2.2.1 文氏管流量計 13 2.2.2壓力轉換器 13 2.2.3風速轉換器 14 2.2.4浮子式流量計 14 2.2.5 MIRAN濃度測量儀 15 2.3實驗方法 15 2.3.1 流場可視化 16 2.3.2 濃度測試 16 第三章 外裝型氣罩流動型態 19 3.1 傳統外裝型氣罩流場可視化 19 3.1.1 側視垂直面 20 3.1.2 正視垂直面 20 3.1.3 水平面 21 3.2第一型外裝型氣罩流場可視化 22 3.2.1 側視垂直面 22 3.2.2 水平面 23 3.3第二型外裝型氣罩流場可視化 23 3.3.1 側視垂直面 24 3.3.2 水平面 24 3.4第三型外裝型氣罩流場可視化 25 3.4.1 側試垂直面 25 3.4.2 水平面 26 3.5第四型外裝型氣罩流場可視化 26 3.5.1 側試垂直面 27 3.5.2 水平面 27 第四章 追蹤氣體洩漏濃度 29 4.1 靜態局部測試 29 4.1.1 傳統外裝型氣罩濃度測試 30 4.1.2 第三型外裝型氣罩濃度測試 32 4.1.3 第四型外裝型氣罩濃度測試 34 第五章 比較外裝型氣罩改良後氣動力特性 37 第六章 結論 41 參考文獻 42

[1] American Conference of Governmental Industrial Hygienists, Industrial Ventilation - A Manual of Recommended Practice 23rd Edition, American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio, US, 1998.
[2] 行政院勞工委員會,〈粉塵危害預防標準〉,行政院勞工委員會,台北,台灣,1981。
[3] 行政院勞工委員會,〈鉛中毒預防規則〉,行政院勞工委員會,台北,台灣,1974。
[4] 行政院勞工委員會,〈危險物及有害物通識規則〉,行政院勞工委員會,台北,台灣,1992。
[5] See, S. W. and Balasubramanian, R., “Risk assessment of exposure to indoor aerosols associated with Chinese cooking,” Environmantal Research, Vol. 102, No. 2, 2006, pp. 197-204.
[6] Lai, A. C. K. and Chen, F. Z., “Modeling of cooking-emitted particle dispersion and deposition in a residential flat: a real room application,” Building and Environment, Vol. 42, No. 9, 2007, pp. 3253-3260.
[7] Breum, N. O., Madsen, U. and Nielsen, P. V., “Local exhaust ventilation-a numerical and experimental study of capture efficiency,” Building and Environment, Vol. 29, No. 3, 1994, pp. 319-323.
[8] Sorrell, C., Guildlines for Determing Capture Efficiency, U.S. Environmental Protection Agency, New York, NY, 1995.
[9] Delsante, A., Li, Y. and Symons, J., “Residential kitchen range hoods-buoyancy-capture principle and capture efficiency revisited,” Indoor Air, Vol. 7, No. 3, 1997, pp. 151-157.
[10] Delsante, A. and Li, Y., “Derivation of capture efficiency of kitchen range hoods in a confined space,” Building and Environment, Vol. 31, No. 5, 1996, pp. 461-468.
[11] Lim, K. and Lee, C., “A numerical study on the characteristics of flow field, temperature and concentration distribution according to changing the shape of separation plate of kitchen hood system,” Energy and Buildings, Vol. 40, No. 2, 2008, pp. 175-184.
[12] Chen, J. K., Huang, R. F. and Dai, G. Z., “Flow characteristics and spillage mechanisms of wall-mounted and jet-isolated range hoods,” Journal of Occupational and Environmental Hygiene, Vol. 7, No. 11, 2010, pp. 651-61.
[13] 戴冠中,〈外裝型氣罩之流動型態與洩漏特性〉,國立台灣科技大學機械工程學系碩士論文,台北,台灣,2009。
[14] Chen, J. K., Huang, R. F. and Peng, K. L., “Flow characteristics and spillage mechanisms of wall-mounted and jet-isolated range hoods subject to influence from cross draft,” Journalof Occupational and Environmental Hygiene, Vol. 9, No. 1, 2012, pp. 36-45.
[15] Huang, R. F., Sir, S. Y., Chen, Y. K., Yeh, W. Y., Chen, C. W. and Chem, C. C.,”Capture envelopes of rectangular hoods in cross drafts,” AIHAJ, Vol. 62, No. 5, 2001, pp. 563-572.
[16] 勞委會勞工安全衛生研究所,〈作業場所空氣有害預估與控制研究-側風對外裝型氣罩捕集效果之探討〉,勞委會勞工安全衛生研究所,台北,台灣,1999。
[17] 勞委會勞工安全衛生研究所,〈外裝型氣罩控制風速與捕及能力探討〉,勞委會勞工安全衛生研究所,台北,台灣,2000。
[18] Huang, R. F., Chen, J. K. and Lee, J. H., “Development and characterization of an inclined quad-vortex range hood,” Ann Occup Hyg, Vol. 57, No. 9, 2013, pp. 1189-1199.
[19] Hampl, V., “Evaluation of industrial local exhaust hood efficiency by a tracer gas technique,” Am Ind Hyg Assoc J, Vol. 45, No. 7, 1984, pp. 485-90.
[20] American Society of Heating Refrigerating and Air-Conditioning Engineers, 2009 ASHRAE Handbooks Fundamentals, American Society of Heating Refrigerating and Air-Conditioning Engineers, , Atlanta, GA, 2009.

無法下載圖示 全文公開日期 2019/06/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE