簡易檢索 / 詳目顯示

研究生: 鄭偉榮
Tey - Wei Rong
論文名稱: 電透析程序回收工業廢水中醋酸之研究
Electrodialysis for the recovery of acetic acid from industrial wastewater
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧洋
Young Ku
李奇旺
Chi-Wang Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 94
中文關鍵詞: 醋酸電透析硫酸根離子硫酸根回收工廠廢水
外文關鍵詞: Acetic acid, concentration, electrodialysis, sulfate, recovery, wastewater.
相關次數: 點閱:285下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗將探討運用電透析程序於高濃度硫酸根離子電鍍廠廢水中回收醋酸的可能性。其中將使用並比較三種陰離子膜的性能:常規陰離子交換膜(MA-3475)和一價陰離子交換膜(A-192, ASV)。電解質、電流密度、液體流速和膜對數的影響將被探討。其中,使用更強的電流密度、流速和高的膜對數將會有更好的回收表現,而電解質的影響則非常細小。硫酸根離子的影響非常顯著,因為二價陰離子的硫酸根會較一價的醋酸根透過膜來得更有優先性。一價陰離子交換膜(ASV)可有效的阻擋硫酸根並分離醋酸根和硫酸根。用ASV膜處理后的工廠廢水其COD值將在兩小時內低於800mg/L。


A study was carried out on the feasibility of recovery acetic acid from an electroplating wastewater that contained high concentration of sulfate and acetate by using electrodialysis (ED) process. In this work, synthetic wastewater was used for experiments in which conventional membrane (MA-3475) and monovalent anion selective membranes (A-192, ASV) were used. Effects of electrolyte solution, current density, flow rate and number of cell pair were examined. Higher current density, flow rate, and number of cell pair resulted in better recovery, while electrolyte solution had insignificant effect. Interference of sulfate was significant since divalent ion has higher priority to migrate than monovalent acetate. The monovalent-anion selective membrane (ASV) was effective in blocking sulfate ion and showed high efficiency in separation of acetate and sulfate. The final COD in the diluate in treated wastewater using ASV membrane decreased to below 800 mg/L in 2 hours.

中文摘要 I ABSTRACT III CONTENTS VII LIST OF TABLES IX LIST OF FIGURES X Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 1 Chapter 2 Literature review 3 2.1 Electrodialysis 3 2.2 Ion exchange membrane 4 2.3 Limiting current density in ED process 6 2.4 Current efficiency calculation 7 2.5 Parameter in electrodialysis process 8 2.6 Acetic acid recover/remove by ED methods 10 2.7 Carboxylic acid treatment by ED methods 12 Chapter 3 Experimental 13 3.1 Materials 13 3.2 Equipments 15 3.3 Electrodialysis module 16 3.4 Procedures 18 3.4.1 The preparation of reagent/standard solutions 18 3.4.2 Water sample analysis 19 3.4.3 Precipitate analysis and membrane surface analysis 20 3.4.4 Experimental procedures 20 3.4.5 Industrial wastewater treatment by prolonged electrodialysis time 21 3.4.6 Industrial wastewater precipitation by adding calcium acetate 22 Chapter 4 Results and discussion 25 4.1 Limiting current density 25 4.2 Electrodialysis without voltage applying 29 4.3 Effect of electrolyte solution 32 4.4 Effect of current density 36 4.5 Effect of flow rate 41 4.6 Effect of the number of cell pairs 45 4.7 Effect of interfering ion (sulfate) 49 4.8 Comparison of conventional AEM and monovalent selective AEM 58 4.9 Prolonged electrodialysis time 62 4.10 Pretreatment by adding calcium acetate 66 Chapter 5 Conclusions and suggestions 71 5.1 Conclusions 71 5.2 Suggestions 71 Reference 73

Alvarado, L., Chen, A., 2014. Electrodeionization: Principles, strategies and applications. Electrochimica Acta. EA-22481, 1-15.

Baldasso, C., Marczak, L.D.F., Tessaro, I.C., 2014. A comparison of different electrodes solutions on demineralization of permeate whey. Separation Science and Technology. 49, 179-185.

Bhattacharya, M., Dutta, S.K., Sikder, J., Mandal, M.K., 2014. Computational and experimental study of chromium (VI) removal in direct contact membrane distillation. Journal of Membrane Science. 450, 447-456.

Borges, F.J., Balmann, H.R., Guardani, R., 2008. Investigation of the mass transfer processes during the desalination of water containing phenol and sodium chloride by electrodialysis. Journal of Membrane Science. 325,130-138.

Bosko, M.L., Rodrigues, M.A.S., Ferreira J.Z., Miro, E.E., Bernardes A.M., 2014. Nitrate reduction of brines from water desalination plants by membrane electrolysis. Journal of Membrane Science. 451, 276-284.

Bouhidel, K.E., Lakehal, A., 2006. Influence of voltage and flow rate on electrodeionization (EDI) process efficiency. Desalination. 193, 411-421.

Buros, O.K., Cox, R.B., Nusbaum, I., El-Nashar, A.M., Bakish, R., 1981. The U.S.A.I.D. desalination manual: a planning tool for those considering the use of desalination to assist in the development of water resources. International Desalination and Environmental Association.

Chamoulaud, G., Belanger, D., 2004. Chemical modification of the surface of a sulfonated membrane by formation of a sulfonamide bond. Langmuir. 20, 4989-4995.

Chamoulaud, G., Belanger, D., 2005. Modification of ion-exchange membrane used for separation of protons and metallic cations and characterization of the membrane by current-voltage curves. Journal of Colloid and Interface Science. 281, 179-187.

Chen, S.S., Li, C.W., Hsu, H.D., Lee, P.C., Chang, Y.M., Yang, C.H., 2009. Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes. Journal of Hazardous Materials. 161, 1075-1080.

Cheng, K.K., Cai, B.Y., Zhang, J.A., Ling, H.Z., Zhou, Y.J., Ge, J.P., Xu, J.M., 2008. Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemica Engineering Journal. 38, 105-109.

Chukwu, U.N., Cheryan, M., 1999. Electrodialysis of acetate fermentation broths. Applied Biochemistry and Biotechnology. 77-79.

Dlugolecki, P., Anet, B., Metz, S.J., Nijmeijer, K., Wessling, M., 2010. Transport limitations in ion exchange membranes at low salt concentrations. Journal of Membrane Science. 346, 163-171.

Doyen, A., Roblet, C., L’Archeveque-Gaudet, A., Bazinet, L., 2014. Mathematical sigmoid-model approach for the determination of limiting and over-limiting current density values. Journal of Membrane Science. 452,453-459.

Ergun, E., Tor, A., Cengeloglu, Y., Kocak, I., 2008. Electrodialytic removal of fluoride from water: Effects of process parameters and accompanying anions. Separation and Purification Technology. 64, 147-153.

Ferrer, J.S.J, Laborie, S., Durand, G., Rakib, M., 2006. Formic acid regeneration by electromembrane process. Journal of Membrane Science. 280, 509-516.

Fidaleo, M., Moresi, M., 2004. Modelling of sodium acetate recovery from aqueous solutions by electrodialysis. Biotechnology and Bioengineering. 91, 556-568.

Fidaleo, M., Moresi, M., 2006. Assessment of the main engineering parameters controlling the electrodialytic recovery of sodium propionate from aqueous solutions. Journal of Food Engineering. 76, 218-231.

Frenzel, I., Holdik, H., Stamatialis, D.F., Pourcelly, G., Wessling, M., 2005. Chromic acid recovery by electro-electrodialysis I. Evaluation of anion-exchange membrane. Journal of Membrane Science. 261, 49-57.

Gong, Y., Tang, Y., Wang, X.L., Yu, L.X., Liu, D.H., 2004. The possibility of the desalination of actual 1,3-propanediol fermentation broth by electrodialysis. Desalination. 161, 169-178.

Guler, E., Baak, W.V., Saakes, M., Nijmeijer, K., 2014. Monovalent-ion-selective membranes for reverse electrodialysis. Journal of Membrane Science. 455, 254-270.

Habe, H., Shimada, Y., Yakushi, T., Hattoti, H., Ano, Y., Fukuoka, T., Kitamoto, D., Itagaki, M., Watanabe, K., Yanagishita, H., Matsushita, K., Sakaki, K., 2009. Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Applied and Environmental Microbiology. 75, 7760-7766.

Habova, V., Melzoch, K., Rychtera, M., Sekavova, B., 2004. Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth. Desalination. 163, 361-372.

Huang, C.H., Xu, T.W., 2006. Electrodialysis with bipolar membrane for sustainable development. Environmental Science and Technology. 40, 5233-5243.

Huang, C.H., Xu, T.W., Zhang, Y.P., Xue, Y.H., Chen, G.W., 2007. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. Journal of Membrane Science. 288, 1-12.

Jiang, C.X., Wang, Y.M., Zhang, Z.H., Xu, T.W., 2014. Electrodialysis of concentrated brine from RO plant to produce coarse salt and freshwater. Journal of Membrane Science. 450, 323-330.

Kameche, M., Xu, F., Innocent, C., Pourcelly, G., 2003. Electrodialysis in water-ethanol solutions: application to the acidification of organic salts. Desalination. 154, 9-15.

Karas, F., Hnat, J., Paidar, M., Schauer, J., Bouzek, K., 2014. Determination of the ion-exchange capacity of anion-selective membranes. International Journal of Hydrogen Energy. 39, 5054-5062.

Kariduraganavar, M.Y., Nagarale, R.K., Kittur, A.A., Kulkarni, S.S., 2006. Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications. Desalination. 197, 225-246.

Kassotis, J., Gregor, H.P., Chlanda, F.P., 1984. Electrodialytic water splitting: conversion of dilute sodium acetate or acetic acid into concentrated acid. Journal of the Electrochemical Society. 131, 2810-2814.

Kim, D.H., 2011. A review of desalting process techniques and economic analysis of the recovery of salts from retentates. Desalination. 270, 1-8.

Laktionov, E., Dejean, E., Sandeaux, J., Sandeaux, R., Gavach, C., Pourcelly, G., 1999. Production of high resistivity water by electrodialysis. Influence of ion-exchange textiles as conducting spacers. Separation Science and Technology. 34, 69-84.

Lee, J.W., Trinh, L.T.P., Lee,H.J., 2014. Removal of inhibitors from a hydrolysate of lignocellulosic biomass using electrodialysis. Separation and Purification Technology. 122, 242-247.

Li, Q.H., Huang, C.H., Xu,T.W., 2009. Bipolar membrane electrodialysis in an organic medium: production of methyl methoxyacetate. Journal of Membrane Science. 339, 28-32.

Luo, J.Y., Wu, C.M., Xu, T.W., Wu, Y.H., 2011. Diffusion dialysis-concept, principle and applications. Journal of Membrane Science. 366, 1-16.

Mulyati, S., Takagi, R., Fujii, A., Ohmukai, Y., Matsuyama, H., 2013. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition. Journal of Membrane Science. 431, 113-120.

Nomura, Y., Iwahara, M., Hongo, M., 1988. Acetic acid production by an electrodialysis fermentation method with a computerized control system. Applied and Environmental Microbiology. 54, 137-142.

Ortiz, J.M., Sotoca, J.A., Exposito, E., Gallud, F., Garcia-Garcia, V., Montiel, V., Aldaz, A., 2005. Brackish water desalination by electrodialysis: batch recirculation operation modeling. Journal of Membrane Science. 252, 65-75.

Sarkar, S., Sengupta, A.K., Prakash, P., 2010. The Donnan membrane principle: opportunities for sustainable engineered processes and materials. Environmental Science and Technology. 44, 1161-1166.

Schofield, R.W., Fane, A.G., Fell, C.J.D., 1990. Factors affecting flux in membrane distillation. Desalination. 77, 279-294.

Tanaka Y., Ehara, R., Itoi, S., Goto, T., 2003. Ion-exchange membrane electrodialytic salt production using brine discharged from a reverse osmosis seawater desalination plant. Journal of Membrane Science. 222, 71-86.

Tanaka, Y., 2002. Water dissociation in ion-exchange membrane electrodialysis. Journal of Membrane Science. 203, 227-244.

Tanaka, Y., 2004. Concentration polarization in ion-exchange membrane electrodialysis: The events arising in an unforced flowing solution in a desalting cell. Journal of Membrane Science. 244, 1-16.

Tanaka, Y., 2005. Limiting current density of an ion-exchange membrane and of an electrodialyzer. Journal of Membrane Science. 266, 6-17.

Tanaka, Y., 2010. Water dissociation reaction generated in an ion exchange membrane. Journal of Membrane Science. 350, 347-360.

Trinh, L.T.P., Kundu, C., Lee, J.W., Lee, H.J., 2014. An integrated detoxification process with electrodialysis and adsorption from the hemicellulose hydrolysates of yellow poplars. Bioresource Technology. 161, 280-287.

Wong, M., Woodley, J.M., Lye, G.J., 2010. Application of bipolar electrodialysis to E. coli fermentation for simultaneous acetate removal and pH control. Biotechnology Letter. 32, 1053-1057.

Wong, M., Wright, M., Woodley, J.M., Lye, G.J., 2009. Enhanced recombinant protein synthesis in batch and fed-batch Escherichia coli fermentation based on removal of inhibitory acetate by electrodialysis. Journal of Chemical Technology and Biotechnology. 84, 1284-1291.

Xu, T.W., 2005. Ion exchange membranes: state of their development and perspective. Journal of Membrane Science. 263, 1-29.

Yang, H., Zhang, X.S., Yuan, W.K., 2008. Effect of operating parameters on the condensation of ammonium sulfate by electrodialysis. Chemical Engineering Technology. 31, 1261-1264.

Zhang, X., Li, C.R., Wang, Y.M., Luo, J.Y., Xu, T.W., 2011. Recovery of acetic acid from simulated acetaldehyde wastewaters: bipolar membrane electrodialysis processes and membrane selection. Journal of Membrane Science. 379, 184-190.

QR CODE