簡易檢索 / 詳目顯示

研究生: 王羽涵
Yu-Han Wang
論文名稱: 含氮雜環Benzo[c]cinnoline對含有DPP與TVT結構的共軛高分子之特性影響
The Effects of Heterocyclic Benzo[c]cinnoline on the Properties of Conjugated Polymers Containing DPP and TVT Units
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 游進陽
Chin-Yang Yu
張志宇
Chih-Yu Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 73
中文關鍵詞: 含氮雜環共軛高分子有機場效電晶體
外文關鍵詞: benzo[c]cinnoline, diketopyrrolopyrrole
相關次數: 點閱:247下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Benzo[c]cinnoline (BZC) 是一種基於聯苯的雜環結構,頂部由一個偶氮基團固定。這種方法賦予 BZC 共面性和吸電子能力。迄今為止,很少有人探索含有偶氮基團的共軛高分子在有機場效電晶體 (OFET) 中的應用。我們在這項研究中製備了 benzo[c]cinnoline (BZC) 、 diketopyrrolopyrrole (DPP) 和 thiophene-vinyl-thiophene (TVT) 組成的共聚高分子,以研究 BZC 單元對高分子的光學、電化學性能和 OFET 元件性能的影響。聚合過程使用 Stille polymerization,通過控制不同的單體進料比合成高分子。我們發現 DPP-BZC 具有獨特的聚集和分子堆積傾向,而這個現象可能是由BZC單元引起的。通過在 DPP-BZC 的紫外-可見光譜中出現額外的吸收肩 (absorption shoulder) 來證實聚集現象,當溫度升高時,吸收肩變得不那麼明顯。通過低掠角X光繞射法 (GIXRD) 測量, DPP-BZC 在 out-of-plane 方向表現出高達 (300) 的高分子堆積,堆積距離 (d-spacing) 為 d(100) = 18.93 Å。具有較低 LUMO 能階的 DPP-BZC 在 OFET 性能中表現出雙極特性 (ambipolar)。而其他 DPP-TVT-BZC 共聚高分子僅顯示出 p-type 特性。其中, DPP-TVT-BZC 5% 表現出最高的電洞遷移率 (μmax = 0.21 cm2 V-1 s-1)。


Benzo[c]cinnoline (BZC) is a heterocyclic structure based on biphenyl fixed by an azo-group on the top. This approach endows BZC with coplanarity and electron withdrawing ability. Until now, the application of conjugated polymers containing azo-group in organic field-effect transistor (OFET) has rarely been explored. In this study, copolymers composed of benzo[c]cinnoline (BZC), diketopyrrolopyrrole (DPP) and thiophene vinyl thiophene (TVT) were prepared to investigate the effects of BZC units on the optical, electrochemical properties, and OFET device performance of copolymers. The copolymers were synthesized using Stille polymerization by controlling different monomer feed ratios. DPP-BZC was found to have distinctive aggregation and molecular packing tendency which might be resulted from BZC unit. The aggregation was confirmed by the presence of additional absorption shoulder in the UV-vis spectrum of DPP-BZC, which became less distinct when the temperature was increased. From grazing incidence X-ray diffraction (GIXRD) measurement, DPP-BZC exhibited high molecular packing pattern up to (300) in the out-of-plane direction with a lamellar packing distance of d(100) = 18.93 Å. DPP-BZC with a lower LUMO level demonstrated ambipolar characteristics in OFET performance. Other DPP-TVT-BZC copolymers only showed p-channel characteristics. DPP-TVT-BZC 5% exhibited the highest hole mobility (μmax = 0.21 cm2 V-1 s-1).

Acknowledgement I ABSTRACT II 摘要 III TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VIII LIST OF SCHEMES IX CHAPTER 1 INTRODUCTION 1 1.1. Conjugated Polymer 1 1.2. Molecular Structure and Designing 3 1.3. Organic Field-Effect Transistor (OFET) 8 1.3.1. Structures and Operating Methods 9 1.3.2. Representative Polymers in OFET applications 12 1.4. Diketopyrrolopyrrole-Based Conjugated Polymers 15 1.5. Nitrogen Substitution in Conjugated Polymers 16 1.6. Objective 19 CHAPTER 2 EXPERIMENTAL 20 2.1. Monomer Synthesis 20 2.1.1. (E)-1,2-Bis(5-bromothiophen-2-yl)ethene (M2) 20 2.1.2. 2,5-Bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP-20C) (1) 21 2.1.3. 2,5-Bis(2-octyldodecyl)-3,6-bis(5-(trimethylstannyl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP-tin) (M3) 22 2.2. General Procedure for Polymer Synthesis 23 2.2.1. DPP-TVT 23 2.2.2. DPP-TVT-BZC 5 % 24 2.2.3. DPP-TVT-BZC 10 % 24 2.2.4. DPP-TVT-BZC 20 % 24 2.2.5. DPP-BZC 25 2.3. Device Fabrication 26 2.4. Characterization and Analysis 26 CHAPTER 3 RESULTS AND DISCUSSION 28 3.1. Synthesis and Characterization 28 3.2. Optical Properties 36 3.3. Computational Simulation 40 3.4. Energy Level Study 44 3.5. OFET Device Performance 47 3.6. Thin Film Morphology 52 CHAPTER 4 CONCLUSIONS 55 REFERENCE 56

1. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D., Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chemical Reviews 2012, 112 (4), 2208-2267.
2. Paterson, A. F.; Singh, S.; Fallon, K. J.; Hodsden, T.; Han, Y.; Schroeder, B. C.; Bronstein, H.; Heeney, M.; McCulloch, I.; Anthopoulos, T. D., Recent progress in high‐mobility organic transistors: a reality check. Advanced Materials 2018, 30 (36), 1801079.
3. Yang, J.; Zhao, Z.; Wang, S.; Guo, Y.; Liu, Y., Insight into High-Performance Conjugated Polymers for Organic Field-Effect Transistors. Chem 2018, 4 (12), 2748-2785.
4. Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y., Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chemical reviews 2015, 115 (23), 12633-12665.
5. Shi, L.; Guo, Y.; Hu, W.; Liu, Y., Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors. Materials Chemistry Frontiers 2017, 1 (12), 2423-2456.
6. Yang, J.; Zhao, Z.; Geng, H.; Cheng, C.; Chen, J.; Sun, Y.; Shi, L.; Yi, Y.; Shuai, Z.; Guo, Y., Isoindigo‐Based Polymers with Small Effective Masses for High‐Mobility Ambipolar Field‐Effect Transistors. Advanced Materials 2017, 29 (36), 1702115.
7. Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T., Donor–Acceptor‐Conjugated Polymer for High‐Performance Organic Field‐Effect Transistors: A Progress Report. Advanced Functional Materials 2019.
8. Mei, J.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z., Integrated materials design of organic semiconductors for field-effect transistors. J Am Chem Soc 2013, 135 (18), 6724-46.
9. Lamport, Z. A.; Haneef, H. F.; Anand, S.; Waldrip, M.; Jurchescu, O. D., Tutorial: Organic field-effect transistors: Materials, structure and operation. Journal of Applied Physics 2018, 124 (7), 071101.
10. Takimiya, K.; Osaka, I.; Nakano, M., π-Building Blocks for Organic Electronics: Revaluation of “Inductive” and “Resonance” Effects of π-Electron Deficient Units. Chemistry of Materials 2014, 26 (1), 587-593.
11. Kim, B.-G.; Ma, X.; Chen, C.; Ie, Y.; Coir, E. W.; Hashemi, H.; Aso, Y.; Green, P. F.; Kieffer, J.; Kim, J., Energy Level Modulation of HOMO, LUMO, and Band-Gap in Conjugated Polymers for Organic Photovoltaic Applications. Advanced Functional Materials 2013, 23 (4), 439-445.
12. Takimiya, K.; Yamamoto, T.; Ebata, H.; Izawa, T., Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors. Science and Technology of Advanced Materials 2007, 8 (4), 273-276.
13. Pei, D.; Wang, Z.; Peng, Z.; Zhang, J.; Deng, Y.; Han, Y.; Ye, L.; Geng, Y., Impact of Molecular Weight on the Mechanical and Electrical Properties of a High-Mobility Diketopyrrolopyrrole-Based Conjugated Polymer. Macromolecules 2020, 53 (11), 4490-4500.
14. Guo, X.; Ortiz, R. P.; Zheng, Y.; Hu, Y.; Noh, Y.-Y.; Baeg, K.-J.; Facchetti, A.; Marks, T. J., Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors: Synthesis, Structure−Property Correlations, Charge Carrier Polarity, and Device Stability. Journal of the American Chemical Society 2011, 133 (5), 1405-1418.
15. Li, M.; An, C.; Marszalek, T.; Baumgarten, M.; Mullen, K.; Pisula, W., Impact of Interfacial Microstructure on Charge Carrier Transport in Solution-Processed Conjugated Polymer Field-Effect Transistors. Adv Mater 2016, 28 (11), 2245-52.
16. Tsao, H. N.; Mullen, K., Improving polymer transistor performance via morphology control. Chem Soc Rev 2010, 39 (7), 2372-86.
17. Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature Communications 2014, 5 (1), 3005.
18. Sun, H.; Wang, Q.; Qian, J.; Yin, Y.; Shi, Y.; Li, Y., Unidirectional coating technology for organic field-effect transistors: materials and methods. Semiconductor Science and Technology 2015, 30 (5), 054001.
19. Andric, S., III-V Nanowire MOSFET High-Frequency Technology Platform. Department of Electrical and Information Technology, Lund University: 2021.
20. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters 1986, 49 (18), 1210-1212.
21. Lee, C.; Lee, S.; Kim, G.-U.; Lee, W.; Kim, B. J., Recent advances, design guidelines, and prospects of all-polymer solar cells. Chemical reviews 2019, 119 (13), 8028-8086.
22. Khim, D.; Luzio, A.; Bonacchini, G. E.; Pace, G.; Lee, M. J.; Noh, Y. Y.; Caironi, M., Uniaxial Alignment of Conjugated Polymer Films for High-Performance Organic Field-Effect Transistors. Adv Mater 2018, 30 (20), e1705463.
23. Facchetti, A., Semiconductors for organic transistors. Materials Today 2007, 10 (3), 28-37.
24. Sirringhaus, H., 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon. Advanced Materials 2014, 26 (9), 1319-1335.
25. Jo, G.; Jung, J.; Chang, M., Controlled Self-Assembly of Conjugated Polymers via a Solvent Vapor Pre-Treatment for Use in Organic Field-Effect Transistors. Polymers (Basel) 2019, 11 (2).
26. Li, M.; An, C.; Marszalek, T.; Baumgarten, M.; Yan, H.; Mullen, K.; Pisula, W., Controlling the Surface Organization of Conjugated Donor-Acceptor Polymers by their Aggregation in Solution. Adv Mater 2016, 28 (42), 9430-9438.
27. Schulz, G. L.; Ludwigs, S., Controlled Crystallization of Conjugated Polymer Films from Solution and Solvent Vapor for Polymer Electronics. Advanced Functional Materials 2017, 27 (1).
28. Sui, Y.; Deng, Y.; Du, T.; Shi, Y.; Geng, Y., Design strategies of n-type conjugated polymers for organic thin-film transistors. Materials Chemistry Frontiers 2019, 3 (10), 1932-1951.
29. Yi, Z.; Wang, S.; Liu, Y., Design of High-Mobility Diketopyrrolopyrrole-Based π-Conjugated Copolymers for Organic Thin-Film Transistors. Advanced Materials 2015, 27 (24), 3589-3606.
30. Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Müllen, K., Ultrahigh Mobility in Polymer Field-Effect Transistors by Design. Journal of the American Chemical Society 2011, 133 (8), 2605-2612.
31. Yamashita, Y.; Hinkel, F.; Marszalek, T.; Zajaczkowski, W.; Pisula, W.; Baumgarten, M.; Matsui, H.; Müllen, K.; Takeya, J., Mobility Exceeding 10 cm2/(V·s) in Donor–Acceptor Polymer Transistors with Band-like Charge Transport. Chemistry of Materials 2016, 28 (2), 420-424.
32. Wang, Y.; Hasegawa, T.; Matsumoto, H.; Michinobu, T., Significant Improvement of Unipolar n-Type Transistor Performances by Manipulating the Coplanar Backbone Conformation of Electron-Deficient Polymers via Hydrogen Bonding. Journal of the American Chemical Society 2019, 141 (8), 3566-3575.
33. Park, J. H.; Jung, E. H.; Jung, J. W.; Jo, W. H., A Fluorinated Phenylene Unit as a Building Block for High-Performance n-Type Semiconducting Polymer. Advanced Materials 2013, 25 (18), 2583-2588.
34. Yun, H.-J.; Kang, S.-J.; Xu, Y.; Kim, S. O.; Kim, Y.-H.; Noh, Y.-Y.; Kwon, S.-K., Dramatic Inversion of Charge Polarity in Diketopyrrolopyrrole-Based Organic Field-Effect Transistors via a Simple Nitrile Group Substitution. Advanced Materials 2014, 26 (43), 7300-7307.
35. Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G., Diazaisoindigo-Based Polymers with High-Performance Charge-Transport Properties: From Computational Screening to Experimental Characterization. Chemistry of Materials 2016, 28 (7), 2209-2218.
36. Dai, Y.-Z.; Ai, N.; Lu, Y.; Zheng, Y.-Q.; Dou, J.-H.; Shi, K.; Lei, T.; Wang, J.-Y.; Pei, J., Embedding electron-deficient nitrogen atoms in polymer backbone towards high performance n-type polymer field-effect transistors. Chemical Science 2016, 7 (9), 5753-5757.
37. Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y., Record High Electron Mobility of 6.3 cm2V−1s−1 Achieved for Polymer Semiconductors Using a New Building Block. Advanced Materials 2014, 26 (17), 2636-2642.
38. Chen, J.; Jiang, Y.; Yang, J.; Sun, Y.; Shi, L.; Ran, Y.; Zhang, Q.; Yi, Y.; Wang, S.; Guo, Y.; Liu, Y., Copolymers of Bis-Diketopyrrolopyrrole and Benzothiadiazole Derivatives for High-Performance Ambipolar Field-Effect Transistors on Flexible Substrates. ACS Applied Materials & Interfaces 2018, 10 (31), 25858-25865.
39. Chen, Z.; Li, M.; Hu, M.; Wang, S.; Miao, Z.; Xu, S.; Chen, C.; Dong, H.; Huang, W.; Chen, R., All-acceptor polymers with noncovalent interactions for efficient ambipolar transistors. Journal of Materials Chemistry C 2020, 8 (6), 2094-2101.
40. Lee, S.-W.; Chien, S.-H.; Chen, J.-C.; Wang, S.-H.; Wang, L.-Y.; Lai, B.-H.; Wang, C.-L., Synthesis and characterization of heterocyclic conjugated polymers containing planar benzo[c]cinnoline and tetraazapyrene structures for organic field-effect transistor application. Organic Electronics 2019, 66, 136-147.
41. Zhang, G.; Yu, H.; Sun, Y.; Wang, W.; Zhao, Y.; Wang, L.; Qiu, L.; Ding, Y., Aza-substitution on naphthalene diimide-based conjugated polymers for n-type bottom gate/top contact polymer transistors under ambient conditions. Journal of Materials Chemistry C 2021, 9 (2), 633-639.
42. Dharmapurikar, S. S.; Chithiravel, S.; Mane, M. V.; Deshmukh, G.; Krishnamoorthy, K., Dihedral angle control to improve the charge transport properties of conjugated polymers in organic field effect transistors. Chemical Physics Letters 2018, 695, 51-58.
43. Son, S. Y.; Kim, Y.; Lee, J.; Lee, G. Y.; Park, W. T.; Noh, Y. Y.; Park, C. E.; Park, T., High-Field-Effect Mobility of Low-Crystallinity Conjugated Polymers with Localized Aggregates. J Am Chem Soc 2016, 138 (26), 8096-103.
44. Zhao, X.; Zhan, X., Electron transporting semiconducting polymers in organic electronics. Chemical Society Reviews 2011, 40 (7), 3728-3743.
45. Xu, Y.; Huang, F.; Li, W., Schottky-Barrier-Dependent Electrical Characteristics in Conjugated Polymer Transistors With Various Contact Metals. 2020, 7.

QR CODE