簡易檢索 / 詳目顯示

研究生: 郭宗瑋
Zong-Wei Guo
論文名稱: 探討MnFeGe的添加對於 MnNiSi 合金結構相變之影響
Study the effect of MnFeGe addition on the structural transformation of MnNiSi alloys
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 丘群
Chun Chiu
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: MnNiSi 合金MnFeGe 合金等結構合金置換結構相變化
外文關鍵詞: MnNiSi alloy, MnFeGe alloy, isostructural alloy substitution, structural phase transition
相關次數: 點閱:158下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因氟氯碳化物流體冷媒之逸散對溫室效應的加劇,使之將在2042年退出製冷市場,因此需要新型態的冷媒進行替代,而MnNiSi-based材料在致冷上被認為是能替代現今冷媒的材料能夠進行應用。在本篇研究中, MnNiSi 合金作為替代之磁冷媒材料,本實驗藉由置換MnFeGe合金,探討其相轉變溫度是否隨晶格扭曲而降低,並期望能使結構相轉變在室溫發生。
在此篇研究中,利用真空感應熔煉爐製備 MnNiSi與MnFeGe合金,藉由MnFeGe等結構合金之置換製成MnNiSi-Based合金,利用場發射掃描式電子顯微鏡(FE-SEM)、X 光繞射儀(XRD)及示差掃描熱卡量計(DSC)分析,探討微結構、晶體結構、結構相變化溫度之影響。MnNiSi 鐵磁性形狀記憶合金在 1197K 發生結構相變化,由 Orthorhombic 結構之低溫相轉變 Hexagonal 結構之高溫相。 (MnNiSi)1-x(MnFeGe)x合金樣品中,以Fe,Ge 置換部分 Ni, Si, 使合金原子有效置換 MnNiSi 合金原子之位置,晶體結構仍維持 Orthorhombic 結構;然而Fe, Ge因原子半徑及與 Ni, Si 形成鍵結長度相比較為大,使 Orthorhombic 結構之晶格產生扭曲,能量上升使結構傾向不穩定,進而降低 MnNiSi 之結構相轉變溫度。隨MnFeGe添加,結構轉變溫度隨晶格扭曲程度改變,在x=0.50時使 Orthorhombic 結構之晶格扭曲程度最大,晶格常數比值a/b由1.639降至1.580,相變化溫度由1197K降至371 K。然而,若更進一步置換MnFeGe雖成功將其高溫相拉低於室溫穩定成相,但並未發現其在室溫下的相轉變行為,不利於室溫磁致冷的應用。在此條件下,認為(MnNiSi)0.50(MnFeGe)0.50在本研究中為MnNiSi-based材料中具潛力之磁致冷材料。


Due to the aggravation of the greenhouse effect due to the leakage of CFC fluid refrigerants, it will be withdrawn from the refrigeration market in 2042, so new types of refrigerants are required to be replaced, and MnNiSi-based materials are considered to be able to replace in refrigeration. In this study, MnNiSi alloy is used as an alternative magnetic refrigerant material. By replacing MnFeGe alloy, this experiment investigates whether the phase transition temperature decreases with lattice distortion, and it is expected that the structural phase transition can occur at room temperature.
In this study, MnNiSi and MnFeGe alloys were prepared using a vacuum induction melting furnace, and MnNiSi-Based alloys were prepared by replacing isostructural alloys such as MnFeGe. Field emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD) and Differential Scanning Calorimeter (DSC) analysis to explore the influence of microstructure, crystal structure, and structural phase change temperature. The MnNiSi ferromagnetic shape memory alloy undergoes a structural phase change at 1197K, from the low-temperature phase of the Orthorhombic structure to the high-temperature phase of the Hexagonal structure. In (MnNiSi)1-x(MnFeGe)x alloy samples, some Ni and Si are replaced by Fe and Ge, so that the alloy atoms can effectively replace the positions of MnNiSi alloy atoms, and the crystal structure still maintains the Orthorhombic structure. However, due to the atomic radius and Compared with Ni and Si, the bond length is relatively large, which makes the crystal lattice of Orthorhombic structure distorted, and the energy rise makes the structure tend to be unstable, thereby reducing the structural phase transition temperature of MnNiSi. With the addition of MnFeGe, the structural transition temperature changes with the degree of lattice distortion. When x=0.50, the degree of lattice distortion of the Orthorhombic structure is the largest, the lattice constant ratio a/b decreases from 1.639 to 1.580, and the phase change temperature decreases from 1197K to 371K. However, if MnFeGe is further replaced, although its high-temperature phase is successfully pulled down to a stable phase below room temperature, its phase transition behavior at room temperature has not been found, which is not conducive to the application of room temperature magnetic refrigeration. Under this condition, it is considered that (MnNiSi)0.50(MnFeGe)0.50 is a potential magnetic refrigeration material among MnNiSi-based materials in this study.

目錄 摘要 I Abstract II 誌謝 IV 圖目錄 VII 表目錄 VIII 第一章 簡介 1 第二章 文獻回顧 3 2.1 背景 3 2.2 磁致冷 5 2.2.1 磁熱效應 6 2.2.2 磁相變之種類 9 2.3 磁致冷材料 11 2.4 MnNiSi-Based 系統合金 14 2.4.1 結構相變化溫度對MnNiSi-Based 合金之影響 14 2.4.2 置換第四元素之效應 15 2.4.3 添加等結構合金之效應 16 2.5 MnNiSi-MnFeGe 合金 19 2.6 總結 20 第三章 實驗方法 21 3.1 實驗流程 21 3.2 真空感應融煉爐 22 3.3 (MnNiSi)1-x(MnFeGe)x 鐵磁性合金之實驗步驟 23 3.3.1 (MnNiSi)1-x(MnFeGe)x 合金之製備 23 3.3.2 (MnNiSi)1-x(MnFeGe)x 合金微結構分析之樣品製備 24 3.3.3 (MnNiSi)1-x(MnFeGe)x 合金物理性質分析之樣品製備 25 3.4 實驗分析與儀器原理 26 3.4.1 微結構分析-SEM 26 3.4.2 元素成分分析-EDS 27 3.4.3 晶體結構分析-XRD 28 3.4.4 結構相變化溫度量測-DSC 30 第四章 結果與討論 31 4.1 MnNiSi 合金之分析 31 4.1.1 MnNiSi 之晶體結構分析 32 4.1.2 MnNiSi 之微觀結構與成份分析 35 4.1.3 MnNiSi 之物理性質分析 37 4.2 MnFeGe 合金之分析 38 4.2.1 MnFeGe 之晶體結構分析 39 4.2.2 MnFeGe 之微觀結構與成份分析 40 4.3 (MnNiSi)1-x(MnFeGe)x 之微結構分析 42 4.4 (MnNiSi)1-x(MnFeGe)x 之晶體結構分析 46 4.4.1 (MnNiSi)1-x(MnFeGe)x 之XRD分析 46 4.4.2 (MnNiSi)1-x(MnFeGe)x 之晶格常數分析 48 4.4.3 (MnNiSi)1-x(MnFeGe)x 之晶胞體積分析 51 4.5 (MnNiSi)1-x(MnFeGe)x 之相變化溫度分析 52 4.6 (MnNiSi)1-x(MnFeGe)x (x= 0.54, 0.58) 之微結構分析 54 4.7 (MnNiSi)1-x(MnFeGe)x (x= 0.54, 0.58) 之相變化分析 56 4.7.1 (MnNiSi)1-x(MnFeGe)x (x= 0.54, 0.58) 之晶體結構分析 56 第五章 結論與未來展望 60 5.1 研究結果總結 60 5.2 未來展望 61 參考文獻 62

[1] V. Franco, J.S. Blazquez, B. Ingale, and A. Conde. The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models. Annu. Rev. Mater. Res., 2012, 42:305-342.
[2] Franziska Scheibel, Tino Gottschall, Andreas TFranziska Scheibel, Tino Gottschall, Andreas Taubel, Maximilian Fries, Konstantin P. Skokov, Alexandra Terwey, Werner Keune, Katharina Ollefs, Heiko Wende, Michael Farle, Mehmet Acet, Oliver Gutfleisch, and Markus E. Gruner. Hysteresis Design of Magnetocaloric Materials—From Basic Mechanisms to Applications. Energy Technol., 2018, 6:1397-1428
[3] Y. Li, Z. Y. Wei, E. K. Liu, G. D. Liu, H. Z. Luo, X. K. Xi, W. H. Wang, and G. H. Wu. Coupled Magnetic and Structural Transitions in Fe-Doped MnNiSi Compounds. IEEE Transactions On Magnetics, November 2015, 51(11)(2502004).
[4] Y. Li, Z. Y. Wei, E. K. Liu, G. D. Liu, S. G. Wang, W. H. Wang, and G. H. Wu. Structural transitions, magnetic properties, and electronic structures of Co(Fe)-doped MnNiSi compounds.Journal Of Applied Physics, 2015, 117(17C117).
[5] FREDER V J A C G. Magnetic and Crystallographic Properties of Ternary Manganese Silicides with Ordered Co,P Structure. Phys. Stat. Sol., 1973, 20(331).
[6] Kamble, Deepak. MnNiSi based magnetocaloric alloys for cooling and energy harvesting applications. Singapore:Nanyang Technological University, 2019
[7] Tapas Samanta, Pol Lloveras, Ahmad Us Saleheen, Daniel L. Lepkowski, Emily Kramer, Igor Dubenko, Philip W. Adams, David P. Young, Maria Barrio, Josep L. Tamarit, Naushad Ali, and Shane Stadler. Barocaloric and magnetocaloric effects in (MnNiSi)1-x(FeCoGe)x. Appl. Phys. Lett., 2018, 112(021907)
[8] Deepak K, Ramanujan R. Near room temperature giant magnetocaloric effect in (MnNiSi)1-x(Fe2Ge)x alloys. Journal of Alloys and Compounds, 2018, 743:494-505.
[9] C. L. Zhang, D. H. Wang, Z. D. Han, B. Qian, H. F. Shi, C. Zhu, J. Chen, and T. Z. Wang. The tunable magnetostructural transition in MnNiSi-FeNiGe system[J]. Applied Physics Letters, 2013, 103(132411).
[10] Y. Li, Z. Y. Wei, H. G. Zhang, E. K. Liu, H. Z. Luo, G. D. Liu, X. K. Xi1, S. G. Wang, W. H. Wang, M. Yue, G. H. Wu, and X. X. Zhang. Windows open for highly tunable magnetostructural phase transitions. APL Materials, 4, 071101(2016).
[11] Tapas Samanta, Daniel L. Lepkowski, Ahmad Us Saleheen, Alok Shankar, Joseph Prestigiacomo, Igor Dubenko, Abdiel Quetz, Iain W. H. Oswald, Gregory T. McCandless, Julia Y. Chan, Philip W. Adams, David P. Young, Naushad Ali, and Shane Stadler. Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems. Physical Review B, 2015, 91(2)(020401(R)).
[12] KKalla S. REFRIGERATION CYCLES AND SYSTEMS: A REVIEW. Int. J. Engg. Res. & Sci. & Tech., 2014, 3(2)(2319-5991).
[13] Smith A. Who discovered the magnetocaloric effect?Warburg, Weiss, and the connection between magnetism and heat. The European Physical Journal H, 2013, 38:507-517.
[14] Ali Alahmer ,Malik Al-Amayreh ,Ahmad O. Mostafa ,Mohammad Al-Dabbas and Hegazy Rezk. Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives. Energies, 2021, 14(4662).
[15] Oliveira N D, Ranke P V. Theoretical aspects of the magnetocaloric effect. Physics Reports, 2010, 489:89-159.
[16] Planes A, Llu´ıs Manosa and Mehmet Acet. Magnetocaloric effect and its relation to shapememory properties in ferromagnetic Heusler alloys. J. Phys.: Condens. Matter, 2009, 21(233201).
[17] Ekkes Brück. Magnetocaloric Refrigeration at Ambient Temperature. Handbook of Magnetic Materials, 2008, 17:1567-2719.
[18] Pecharsky V K, Jr K A G. Magnetocaloric effect and magnetic refrigeration. Journal of Magnetism and Magnetic Materials, 1999, 200:44-56.
[19] O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel and M. Farle. Mastering hysteresis in magnetocaloric materials. Philosophical transactions of the royal society A, 2016, 374(2074).
[20] Kitanovski A. Energy Applications of Magnetocaloric Materials. Advanced Eneygy Materials, 2020, 10(1903741).
[21] Felser C, Hirohata A. Heusler Alloys. Springer Series in Materials Science, 2016, 222.
[22] V.V. Khovaylo, V.D. Buchelnikov, R. Kainuma, V.V. Koledov, M. Ohtsuka, V.G. Shavrov, T. Takagi, S.V. Taskaev, A.N. Vasiliev. Phase transitions in Ni2+xMn1-xGa with a high Ni excess. Physical Review B, 2005, 72(224408).
[23] J.Q.Zhao, H.X.Zhu, C.L.Zhang, Y.G.Nie, H.F.Shi, E.J.Ye, Z.D.Han, D.H.Wang. Magnetostructural transition and magnetocaloric effect in a MnCoSi-based material system. Journal of Alloys and Compounds, 2018, 735:959-963.
[24] JOHNSON V. Diffusionless Orthorhombic to Hexagonal Transitions in Ternary Silicides and Germanides . Inorganic Clzemistry, Vol, 1975, 14(5):1117-1120.
[25] Lloveras P, Samanta T, María Barrio, et al. Giant reversible barocaloric response of (MnNiSi)1−x(FeCoGe)x (x = 0.39, 0.40, 0.41). APL Materials, 2019, 7(061106).
[26] Tapas Samanta, Pol Lloveras, Ahmad Us Saleheen, Daniel L. Lepkowski, Emily Kramer, Igor Dubenko, Philip W. Adams, David P. Young, Maria Barrio, Josep L. Tamarit, Naushad Ali, and Shane Stadler. Barocaloric and magnetocaloric effects in (MnNiSi) 1− x (FeCoGe) x. Appl. Phys. Lett., 2018, 112(021907).
[27] Subrata Ghosh, Saheli Samanta, J. Sridhar Mohanty, Jayee Sinha, and Kalyan Mandal. Giant room temperature magnetocaloric response in a (MnNiSi)1−x(FeNiGa)x system. Journal of Applied Physics, 2022, 132(045001).
[28] A.SzytutaW.Bażela, JTodorovic, A.Ziȩba. Magnetic Properties of the NiMnGe1−xSix system. Journal of Magnetism and Magnetic Materials, 1980, 15-18(1):483-484.
[29] Tapas Samanta, Igor Dubenko, Abdiel Quetz, Joseph Prestigiacomo, Philip W. Adams, Shane Stadler, and Naushad Ali. Mn1-xFexCoGe: A strongly correlated metal in the proximity of a noncollinear ferromagnetic state. Applied Physics Letters, 2013, 103(042408).
[30] W. Bażela,A. Szytula,J. Todorović,A. Zięba. Crystal and Magnetic Structure of the NiMnGel-,Si, System. physica status solidi (a), 1981, 64:367-378.
[31] E. K. Liu, H. G. Zhang, G. Z. Xu, X. M. Zhang, R. S. Ma, W. H. Wang, J. L. Chen, H. W. Zhang, G. H. Wu, L. Feng, and X. X. Zhang. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window. APPLIED PHYSICS LETTERS, 2013, 102(122405)
[32] W. Hanggai, O. Tegus, H. Yibole, F. Guillou. Structural and magnetic phase diagrams of MnFe0.6Ni0.4(Si,Ge) alloys and their giant magnetocaloric effect probed by heat capacity measurements. Journal of Magnetism and Magnetic Materials, 2020, 494(165785).
[33] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. 61 Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
[34] Pevelen D D L. Small Molecule X-Ray Crystallography, Theory and Workflow. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2013.
[35] Hu B, Xu H, Liu S. Experimental investigation and thermodynamic modeling of the Mn–Ni–Si system. CALPHAD, 2011, 35:346-354.
[36] Gupta K. The Mn-Ni-Si (Manganese-Nickel-Silicon) System. JPEDAV, 2006, 27:529-534.
[37] 陳怡安. 探討成分對於 MnNiSi合金相組成之影響. 國立臺灣科技大學, 2021.
[38] Y. G. Shi · Q. Pan · G. B. Zhang · Y. Zhu · J. Y. Fan · D. N. Shi. Critical Behavior at Paramagnetic to Ferromagnetic Phase Transition in MnFeGe Compound. J Supercond Nov Magn, 2014, 28(5).
[39] A. Szytula, Z. Tomkowicz, A.T. Pqdziwiatr. Crystal and magnetic structure of CoMnGe, CoFeGe, FeMnGe and NiFeGe. Journal of Magnetism and Magnetic Mater, 1981, 25:176-186.
[40] Enke Liu, Wenhong Wang , Lin Feng , Wei Zhu. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nature Communications, 2012, 3(873).
[41] Chena J, Chhetria T P, Saleheena A U. Effects of heat treatments on magneto-structural phase transitions in MnNiSi-FeCoGe alloys. Intermetallics, 2019, 112(106547).
[42] Gupta K P. The Mn-Ni-Si (Manganese-Nickel-Silicon) system. Journal of Phase Equilibria and Diffusion, 2006, 27:529-534.
[43] B. Hu, Y. Du, J.-J. Yuan , Z.-F. Liu , Q.-P. Wang. Thermodynamic Reassessment Of The Mn-ni-si System. J. Min. Metall. Sect. B-Metall., 2015, 50(2)B:125-132.

QR CODE