簡易檢索 / 詳目顯示

研究生: 李宗穎
Tsung-Yin Lee
論文名稱: 筆記型電腦散熱模組之數值與實驗整合研究
An Integrated Numerical and Experimental Study of CPU Cooler for Notebook
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 莊福盛
Fu-Sheng Chuang
羅玉山
Yu-Shan Luo
周永泰
Yung-Tai Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 203
中文關鍵詞: 離心扇散熱座
外文關鍵詞: StarCD, CFD, Centrifugal fan
相關次數: 點閱:199下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

筆記型電腦功能日益強大,加上空間及電子零件的縮小,其散熱問題非一般桌上型電腦的散熱模組可以解決,需要設計更大效率的散熱模組。因此,為了要解決功能日益強大筆記型電腦的散熱問題及所具有的高阻抗系統特性,本文除了考量散熱風扇的尺寸設計,對離心風扇作幾何參數上的研究,透過數值模擬將風扇流場可視化,進行物理現象分析,從中找出性能最佳的風扇;另外再配合風扇出口面的模擬流場設計流線型散熱鰭片,藉由兩者系統化設計考量,期望將散熱模組之最佳性能表現出來,改變市面上散熱座與風扇之間分開製作的現況。在風扇部分的結果,透過幾何參數的改變,其中包含了進風口直徑、蝸型外殼、葉輪型式及遮蔽效應等,可發現使用理論計算之入口角搭配翼型之葉片,在相同外殼上,流量方面較原始設計提昇了25.9%,靜壓方面則可增加12.2%。在散熱座方面,除了依據風扇出口流場來設計流線型鰭片散熱座外,再設計一款等散熱面積的直板型鰭片散熱座以作為對照組。經實驗比較後發現其散熱效果超出預期,流線型鰭片散熱座在設計方式上需要考量更多因素,例如改變散熱座形狀。透過風扇與鰭片系統化設計,即可提高筆記型電腦散熱模組的散熱效率與降低噪音。


The space within a notebook computer is running out when extra components are included in the system; therefore, a high-efficient thermal mould is in great demand and becoming the topic of this research. A streamlined heat sink is designed to incorporate with a centrifugal fan for meeting the thermal challenge of a Pentium M770 processor with 27W power consumption. At first, a comprehensive parametric study on a centrifugal fan is executed to generate a cooling fan with better performance. Next, the numerical simulation on this blower (60×60×15mm3) is performed by using STAD-CD code. Later, the detailed flow field at the fan outlet is visualized numerically and utilized to design the streamlined fin geometry, which matches the flow pattern appropriately and minimize the resistance to the passing airflow. Thereafter, a prototype cooling fan and the heat sink are fabricated via a CNC machine and used to carry out the experimental verification. The outcome of parametric study on fan geometry results in 25.9% and 12.2% increases on airflow and static pressure, respectively. However, the improvement on thermal capacity of the streamlined heat sink is not as expected based on the experimental work. Obviously, there are more alternatives needed for designing a heat sink, such as selecting a non-rectangular base for heat sink. In summary, the measurements agree with numerical outcomes in this study. Moreover, a systematic design scheme, which generates the cooling fan and fin simultaneously, is established successfully and may provide a possibility to reduce the noise output and enhance the thermal performance of heat sink assembly for notebook computers.

摘 要 I Abstract II 致 謝 III 目 錄 IV 圖 索 引 VIII 表 索 引 XIII 符 號 索 引 XV 第一章 緒論 1 1.1 前 言 1 1.2 文獻回顧 5 1.2.1離心扇設計與性能改良 5 1.2.2離心扇噪音改善 8 1.2.3散熱座 10 1.2.4數值模擬 14 1.3 研究動機與方法 15 第二章 風扇設計 21 2.1 風扇簡介 21 2.2 能量方程式 26 2.3 葉輪設計 30 2.3.1 葉輪尺寸 30 2.3.2 葉片角度 33 2.3.3 葉片數 36 2.3.4間隙值 37 2.4 風扇外殼設計 38 第三章 數值方法 43 3.1流場統御方程式 44 3.2 紊流模式 46 3.3 數值方法 48 3.3.1 離散法則 48 3.3.2 上風差分法 50 3.3.3 SIMPLE解法理論 53 3.4網格之建立 55 3.5 數值邊界條件 58 第四章 數值結果與分析 59 4.1 風扇模型格點之建立 59 4.2 基礎個案分析 63 4.2.1 不同高度平面之流場分析 66 4.2.2徑向平面之流場分析 72 4.3變更入風口直徑之結果比較 82 4.3.1不同高度平面之流場分析 84 4.3.2徑向平面之流場分析 91 4.4風扇外殼變更之結果比較 96 4.4.1不同高度平面之流場分析 99 4.4.2徑向平面之流場分析 103 4.5 風扇葉輪變更之結果比較 110 4.5.1 不同高度平面之流場分析 110 4.5.2 徑向平面之流場分析 118 第五章 散熱模組流場分析 121 5.1 流線型鰭片設計 121 5.2 流線型鰭片散熱座分析 127 5.3 直板型鰭片散熱座分析 138 第六章 實驗設備及儀器 148 6.1 風扇性能量測設備 148 6.2 噪音量測設備與環境 158 6.3 散熱器性能量測設備與環境 159 6.3.1 散熱器性能量測設備 159 6.3.2 恆溫環境量測系統 162 6..3.3 感測器之校正 164 第七章 實驗結果與分析 165 7.1 風扇實驗 165 7.1.1 風扇外殼 166 7.1.2 葉輪葉片型式 170 7.1.3 遮蔽效應 174 7.2 散熱模組實驗 179 7.2.1 不同鰭片外型之散熱座熱阻實驗 180 7.2.2 不同加工方式之散熱座熱阻實驗 184 第八章 結論與建議 192 8.1 結論 192 8.2 建議 194 參 考 文 獻 197 作 者 簡 介 203

[1] Eck, B., “Fans : Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans”, Pergamon Press, New York, 1973.
[2] Leidel, W., “Einfluss Von Zungenabstand and Zungenradius auf Kennlinie und Gerausch eines Radial Ventilators”, DLR-FB, pp. 69-16, 1969.
[3] Raj, D. and Swim, W. B., “Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of a F-C Centrifugal Fan Rotor”, Journal of Engineering for Power, Vol. 103, pp. 393-399, 1981.
[4] Lin, S. C., “A Novel F-C Centrifugal Fan Design for Improved Performance”, Department of Mechanical Engineering, Technical Report, Tennessee Technological University, 1982.
[5] Morinushi, K., “The Influence of Geometric Parameters on F. C. Centrifugal Fan Noise”, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 109, pp. 227-234, 1987.
[6] 吳慶財,“前傾式離心風扇之實驗設計”,國立台灣工業技術學院機械工程技術研究所碩士論文,1993年。
[7] 黃家烈,“筆記型電腦冷卻風扇之研究”, 國立台灣科技大學機械工程技術研究所博士論文,2001年。
[8] 許宏棋,“Pentium 4筆記型電腦冷卻風扇之實驗研究”, 國立台灣科技大學機械工程技術研究所碩士論文,2001年。
[9] 楊俊欽,“高性能、低噪音衛浴排風扇之實驗研究”, 國立台灣科技大學機械工程技術研究所碩士論文,2003年。
[10] 孫鈞瑋,“前傾式離心風機數值與實驗之整合研究”, 國立台灣科技大學機械工程技術研究所碩士論文,2004年。
[11] Hüebner, G., “Noise Generated by Centrifugal Fans”, Siemens- Zeitschrift, Vol. 8, pp. 145-155, 1959.
[12] Schlichting, H., “Application of the Boundary Layer Theory to Flow Problems of Turbo Machines”, Siemens-Zeitschrift, Vol. 33, No. 7, pp. 74-82, 1959.
[13] Neise, W., “Noise Reduction in Centrifugal Fans:A Literature Survey”, Journal of Sound and Vibration, Vol. 45, No. 3, pp. 375-403, 1976.
[14] Neise, W., “Review of Noise Reduction Methods for Centrifugal Fans”, Journal of Engineering for Industry, Vol. 104, pp. 151-161, 1982.
[15] Neise, W., and Koopmann, G. H., “The Use of Resonators to Slience Centrifugal Blowers”, Journal of Sound and Vibration, Vol. 82, No. 1, pp. 17-27, 1982.
[16] Kondo, L. and Aoki, Y., “Noise Reduction in Turbo Fans for Air Conditioners”, Technical Review-Mitsubishi Heavy Industries, Vol. 26, No. 3, pp. 173-179, 1989.
[17] Bar-Cohen, A. and Jelinek, M., “Optimum Arrays of Longitudinal Rectangular Fins in Convection Heat Transfer”, Heat Transfer Engineering, Vol. 6, No. 3, pp. 68-78, 1985.
[18] Sparrow, E. M. and Kadle, D. S., “Numerical and Experimental Study on Turbulent Heat Transfer and Fluid Flow in Longitudinal Fin Arrays”, Journal of Heat Transfer, ASME, Vol. 108, pp. 16-23, 1986.
[19] Sparrow, E. M. and Kadle, D. S., “Effect of Tip-to-Shroud Clearance on Turbulent Heat Transfer from a Shrouded, Longitudinal Fin Array”, Journal of Heat Transfer, ASME, Vol. 108, pp. 519-524, 1986.
[20] Kei, S. L. and Roop, R. L. M., “Effects of Tip Clearance and Fin Density on the Performance of Heat Sinks for VLSI Packages”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp.757-765, 1989.
[21] Lee, R. S., Huang, H. C., and Chen, W. Y., “A Thermal Characteristic Study of Extruded-Type Heat Sinks in Considering Air Flow Bypass Phenomenon”, Sixth IEEE Semi-Therm Symposium, pp. 95-102, 1990.
[22] Lehmann, G. L. and Kosteva, S. J., “A Study of Forced Convection Direct Air Cooling in the Downstream Vicinity of Heat Sinks”, Journal of Electronic Packaging, ASME, Vol. 112, pp. 234-240, 1990.
[23] Wirtz, R. A., Chen, W. M., and Zhou, R. H., “Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks”, Journal of Electronic Packaging, ASME, Vol. 116, pp. 206-211, 1994.
[24] Butterbaugh, M. A. and Kang, S. S., “Effect of Airflow Bypass on the Performance of Heat Sinks in Electronic Cooling”, Advances in Electronic Packaging, ASME, Vol. 10-2, pp. 843-848, 1995.
[25] Tavassoli, B., “A Novel Heat Sink Design for Low Speed Flow – a BGA Example”, Intersociety Conference on Thermal Phenomena (I-THERM2000), IEEE, Las Vegas, Nevada, USA, pp. 16-20, May 23-26 2000.
[26] El-Sayed, S., Mohamed, S. M., Abdel-latif, A. M., and Abouda, A. E., “Investigation of Turbulent Heat Transfer and Fluid Flow in Longitudinal Rectangular - Fin Arrays of Different Geometries and Shrouded Fin Array”, Experimental Thermal and Fluid Science, Vol. 26, pp. 879-900, 2002.
[27] Lin, Sheam-Chyun and Chou, Chien-An, “Blockage effect of axial-flow fans applied on heat sink assembly”, Applied Thermal Engineering, Vel. 24, No. 16, pp. 2375-2389, November, 2004
[28] 吳兌倩,“流線型鰭片散熱座數值與實驗之整合研究”,國立台灣科技大學機械工程研究所碩士論文,2004年。
[29] Xie, H., Aghazadeh, M., Lui, W., and Haley, K., “Thermal Solutions to Pentium Processors in TCP in Notebooks and Sub-notebooks”, IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A, Vol. 19, No. 1, pp. 54-65, 1996.
[30] Nguyen, T., Mochizuki, M., Mashiko, K., and Saito, Y., “Use of Heat Pipe / Heat Sink for Thermal Management of High Performance CPUs”, Sixteenth IEEE SEMI-THERMTM Symposium, pp. 76-79, 2000.
[31] Zhang, H. Y., Pinjala, D., Navas, O. K., Iyer, M. K., Chan, P. K., Liu, X. P., Hayashi, H., and Han, J. B., “Development of Thermal Solutions for High Performance Laptop Computers”, 2002 IEEE Inter Society Conference on Thermal Phenomena, pp. 433-440, 2002.
[32] 黃家烈、簡宏斌“軸流風扇之數值模擬與實驗分析”1999中華民國「航太學會/燃燒學會/民航學會」航太聯合會議,桃園,pp.107-117,中華民國八十八年。
[33] 黃家烈、許豐麟“進風口面積在新式筆記型電腦冷卻扇之研究”中華民國機械工程學會第十七屆全國學術研討會論文集,高雄,pp3621-628,中華民國八十九年。
[34] 游裕傑,“離心式電腦風扇的設計與分析”,國立成功大學機械工程學系碩士論文集,2002年。
[35] STAR-CD, Version 3.15, Methodology, 2001.
[36] Bleier, Frank P., “Fan Handbook, Selection, Application, and Design”, McGraw Hill, 1997
[37] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat and Mass Transfer, Vol. 15, pp.1787-1806, 1972.
[38] ANSI/AMCA Standard 210-99 (ANSI/ASHRAE 51-1999), “Laboratory Method of Testing Fans for Aerodynamic Performance Rating”, Air Movement and Control Association, Inc., 1999.
[39] Yen, C. W., “Thermal Challenge in Desktop”, Desktop and Mobile Thermal Simulation Seminar, Taipei, Taiwan, pp. 2-5, Jul. 28 2002.
[40] CNS 8753, “Determination of Sound Power Level of Noises for Fan, Blower, and Compressors”, Chinese National Standard, 1982.
[41] Bommer, L., Grundmann, R., and Klaes, K., Kramer, C., “Effect Blade Design on Centrifugal Fan Noise and Performance”, Noise Control Engineering, Vol. 42, pp. 91-101, 1995.
[42] ISO 3745, “Acoustics -- Determination of Sound Power Levels of Noise Sources Using Sound Pressure -- Precision Methods for Anechoic and Hemi-Anechoic Rooms”, 2003.
[43] “Datasheet – Intel® Pentium® 4 Processor on 90nm Processor with 2-MB L2 Cache”, Intel Document Number 305262-001, January 2005.

QR CODE