簡易檢索 / 詳目顯示

研究生: WILLIAM ONNYXIFORUS PURNOMO
WILLIAM ONNYXIFORUS PURNOMO
論文名稱: USING GENETIC ALGORITHM AND HEURISTIC APPROACH FOR PLATELET MANAGEMENT OF BLOOD CENTER TO REDUCE SHORTAGE AND WASTAGE
USING GENETIC ALGORITHM AND HEURISTIC APPROACH FOR PLATELET MANAGEMENT OF BLOOD CENTER TO REDUCE SHORTAGE AND WASTAGE
指導教授: 林希偉
Shi-Woei Lin
口試委員: 林希偉
Shi-Woei Lin
Ming-Che Hu
Ming-Che Hu
王孔政
Kung-Jeng Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 52
中文關鍵詞: 分離術血小板庫存管理遺傳算法啟發式規則
外文關鍵詞: apheresis platelet, inventory management, genetic algorithm, heuristic rules
相關次數: 點閱:170下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於血品的供應與需求存在相當大的不確定性和變異性,減少血液製品的短缺和浪費一直是血庫和醫院在血品產出和庫存管理上的主要挑戰。本研究旨在開發當單靠分離術血小板的採集量不足以支應醫療所需時,可用於分離術血小板收集和血小板濃厚液(即隨機捐血者血小板)產出的優化模型。在本研究中,我們使用捐血中心每日採集之分離血小板單位數量以及提供醫院的血小板單位數量之時間序列資料,並使用遺傳演算法(genetic algorithm, GA)和模擬方法進行模型的建構與求解。其中GA旨在求算分離血小板的每日最適目標採集量,接著再透過制定模擬模型比較幾個血小板濃厚液的生產規則來降低短缺、逾期和庫存之總成本。本研究之GA模型得出周一至週日的分離血小板採血目標,並透過模擬模型驗證了所提出的血小板濃厚液之合適生產規則,此最佳目標收集量和生產規則之組合可以幫助捐血中心滿足醫院的需求。本研究中提出的方法可以提高血液收集、生產和供應的管理效率,並減少逾期浪費和血液短缺的成本。


    Minimizing shortages and wastage of blood products is a major challenge of production and inventory management faced by blood banks and hospitals. This issue deserves careful attention because there is considerable uncertainty and variability of demand. This research aims to develop an optimization model for Apheresis platelets collection and for platelet production when pooled whole-blood platelets (i.e., random platelets) are in need.
    Time series data of apheresis platelets collected from donors and platelets supplied to hospital daily in Taipei Blood Center from January 2013 to April 2014 used for model formulation. This model is then solved by using a combination of Genetic Algorithm (GA) and simulation approaches. In particular, GA is developed to solve the optimal daily target collection volumes that minimize the total cost of shortages, outdated, and inventory cost. A simulation model is then formulated to compare several inventory/production rules.
    The optimal daily target collection volumes for apheresis platelets with this following sequence 231, 242, 212, 198, 233, 259, 237 (from Monday to Sunday respectively) were obtained by using GA. The proposed policies for platelet production was also verified by using a simulation model to further improve the availability of platelet. The combination of optimal target collection volumes and proposed policy for random platelet production can help TBC to fulfill the demand from the hospital.
    The methods proposed in this study can enhance the management efficiency in blood collection, production, and supply of the blood center. TBC can be easily implemented in other blood centers to reduce the costs of wastages and shortages.

    COVER PAGE i MASTER’S THESIS RECOMMENDATION FORM ii QUALIFICATION FORM BY MASTER’S DEGREE EXAMINATION COMMITTEE iii 摘要 iv ABSTRACT v ACKNOWLEDGMENT vi TABLE OF CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi CHAPTER 1 INTRODUCTION 1 1.1. Research Background 1 CHAPTER 2 LITERATURE REVIEW 3 2.1 Inventory Policy for Perishable Items 3 2.2 Inventory Management of Blood Products 4 2.3 Genetic Algorithm 6 2.4 Forecasting Method 7 2.5 Contribution to The Literature 9 CHAPTER 3 MATERIALS AND METHODS 10 3.1. Variables and Data 10 3.2. Problem Statement and Formulation 10 3.3. Research Procedures 12 CHAPTER 4 DETERMINE OPTIMAL TARGET COLLECTION AMOUNT FOR APHERESIS PLATELET 14 4.1 Problem Definition 14 4.1.1 Mathematical Concept 14 4.1.2 Mathematical Formula 16 4.1.2.1 Notations 16 4.1.2.2 Assumptions 17 4.1.2.3 Mathematical Model 17 4.1.2.4 Objective Function 17 4.1.2.5 Constraints 18 4.2 The Proposed Genetic Algorithm 19 4.2.1 Chromosomes Representation 19 4.2.2 Population Generation 20 4.2.3 Fitness Value Calculation 20 4.2.4 Selection 20 4.2.5 Crossover Process 21 4.2.6 Mutation Process 22 4.2.7 Terminantion Process 23 4.3 Results of The Proposed GA 23 4.3.1 Sensitivity Ananlysis 23 4.3.2 Conclusions 26 CHAPTER 5 FINDING PRODUCTION POLICY 27 5.1 Problem Definition 27 5.2 Production Policies 27 5.2.1 Order-Up-To Level Policy 27 5.2.2 Modified Order-Up-To Level Policy 28 5.2.3 Weighted Mean-Variance Policy 28 5.2.4 Last Value Policy 29 5.2.5 Proposed Method 29 5.3 Prediction Methods 29 5.3.1. Linear Regression 30 5.3.2. Multilinear Regression 30 5.3.3. NN (Neural Network) Regression 30 5.3.4. Support Vector Regression (SVR) 30 5.3.5. ARIMA (Autoregressive Integrated Moving Average) 31 5.4 Result and Analysis 31 5.4.1. Result of The Prediction Method Comparison 31 5.4.2. Results from The Comparison of Heuristic Policies for The Deterministic Problem 32 5.4.3. Results from The Comparison of Heuristic Policies for The Stochastic Problem 32 5.5 Sensitivity Analysis 33 CHAPTER 6 CONCLUSIONS AND RECCOMENDATION 37 6.1 Conclusion 37 6.2 Managerial Implication 37 6.3 Limitation and Recommendation for Future Research 38 REFERENCES 39

    Armstrong, J. S. (1985). Long-range forecasting: Wiley New York ETC.
    Aytug, H., Khouja, M., & Vergara, F. (2003). Use of genetic algorithms to solve production and operations management problems: a review. International Journal of Production Research, 41(17), 3955-4009.
    Beliën, J., & Forcé, H. (2012). Supply chain management of blood products: A literature review. European Journal of Operational Research, 217(1), 1-16.
    Blake, J., Heddle, N., Hardy, M., & Barty, R. (2009). Simplified platelet ordering using shortage and outdate targets. International Journal of Health Management and Information, 1(2), 145-166.
    Borkent‐Raven, B. A., Janssen, M. P., & Van Der Poel, C. L. (2010). Demographic changes and predicting blood supply and demand in the Netherlands. Transfusion, 50(11), 2455-2460.
    Box, G. E., & Jenkins, G. M. (1976). Time series analysis: forecasting and control, revised ed: Holden-Day.
    Brock III, L. G., & Davis, L. B. (2015). Estimating available supermarket commodities for food bank collection in the absence of information. Expert Systems with Applications, 42(7), 3450-3461.
    Callegari, M., Mazzoli, P., de Gregorio, L., Notarnicola, C., Pasolli, L., Petitta, M., & Pistocchi, A. (2015). Seasonal river discharge forecasting using support vector regression: a case study in the Italian Alps. Water, 7(5), 2494-2515.
    Cohen, M., & Pierskalla, W. (1974). Perishable inventory theory and its application to blood bank management. Retrieved from
    Cohen, M., & Pierskalla, W. (1975). Management policies for a regional blood bank. Transfusion, 15(1), 58-67.
    Critchfield, G. C., Connelly, D. P., Ziehwein, M. S., Olesen, L. S., Nelson, C. E., & Scott, E. P. (1985). Automatic prediction of platelet utilization by time series analysis in a large tertiary care hospital. American journal of clinical pathology, 84(5), 627-631.
    Davis, L. B., Jiang, S. X., Morgan, S. D., Nuamah, I. A., & Terry, J. R. (2016). Analysis and prediction of food donation behavior for a domestic hunger relief organization. International Journal of Production Economics, 182, 26-37.
    Dillon, M., Oliveira, F., & Abbasi, B. (2017). A two-stage stochastic programming model for inventory management in the blood supply chain. International Journal of Production Economics, 187, 27-41.
    Farag, A., & Mohamed, R. M. (2004). Regression using support vector machines: basic foundations.
    Farag, A. A., & Mohamed, R. M. (2003). Classification of multispectral data using support vector machines approach for density estimation. Paper presented at the International Conference on Intelligent Engineering System.
    Frankfurter, G. M., Kendall, K. E., & Pegels, C. C. (1974). Management control of blood through a short-term supply-demand forecast system. Management Science, 21(4), 444-452.
    Gen, M., Cheng, R., & Wang, D. (1997). Genetic algorithms for solving shortest path problems. Paper presented at the Evolutionary Computation, 1997., IEEE International Conference on.
    Goyal, S., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), 1-16.
    Gunpinar, S., & Centeno, G. (2015). Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers & Operations Research, 54, 129-141.
    Haijema, R. (2014). Optimal ordering, issuance and disposal policies for inventory management of perishable products. International Journal of Production Economics, 157, 158-169.
    Haijema, R., van der Wal, J., & van Dijk, N. M. (2007). Blood platelet production: Optimization by dynamic programming and simulation. Computers & Operations Research, 34(3), 760-779.
    Hesse, S., Coullard, C., Daskin, M., & Hurter, A. (1997). A case study in platelet inventory management. Paper presented at the Proceedings of the 6th Industrial Engineering Research Conference. Atlanta: Institute of Industrial Engineers.
    Hill, R. M., & Johansen, S. G. (2006). Optimal and near-optimal policies for lost sales inventory models with at most one replenishment order outstanding. European Journal of Operational Research, 169(1), 111-132.
    Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: University of Michigan Press Ann Arbor.
    Hong, W.-C., & Pai, P.-F. (2007). Potential assessment of the support vector regression technique in rainfall forecasting. Water Resources Management, 21(2), 495-513.
    Janssen, L., Claus, T., & Sauer, J. (2016). Literature review of deteriorating inventory models by key topics from 2012 to 2015. International Journal of Production Economics, 182, 86-112.
    Janssen, L., Sauer, J., Claus, T., & Nehls, U. (2018). Development and simulation analysis of a new perishable inventory model with a closing days constraint under non-stationary stochastic demand. Computers & Industrial Engineering, 118, 9-22.
    Jennings, J. B. (1973). Blood bank inventory control. Management Science, 19(6), 637-645.
    Kumari, D., & Wijayanayake, A. (2016). An efficient inventory model to reduce the wastage of blood in the national blood transfusion service. Paper presented at the Manufacturing & Industrial Engineering Symposium (MIES).
    Ledman, R., & Groh, N. (1984). Platelet production planning to ensure availability while minimizing outdating. Transfusion, 24(6), 532-533.
    Levis, A., & Papageorgiou, L. (2005). Customer demand forecasting via support vector regression analysis. Chemical Engineering Research and Design, 83(8), 1009-1018.
    Li, Y.-C., & Liao, H.-C. (2012). The optimal parameter design for a blood supply chain system by the Taguchi method. International Journal of Innovative Computing, Information and Control, 8(11), 7697-7712.
    Liao, H.-C., Chen, M.-H., & Wang, Y.-h. (2014). The study of the optimal parameter settings in a hospital supply chain system in Taiwan. The Scientific World Journal, 2014.
    Lin, Y.-S., & Wang, K.-J. (2018). A two-stage stochastic optimization model for warehouse configuration and inventory policy of deteriorating items. Computers & Industrial Engineering, 120, 83-93.
    Liu, L., & Cheung, K. (1997). Service constrained inventory models with random lifetimes and lead times. Journal of the Operational Research Society, 48(10), 1022-1028.
    Nahmias, S. (1982). Perishable inventory theory: A review. Operations research, 30(4), 680-708.
    Nair, D. J., Rashidi, T. H., & Dixit, V. V. (2017). Estimating surplus food supply for food rescue and delivery operations. Socio-Economic Planning Sciences, 57, 73-83.
    Najafi, M., Ahmadi, A., & Zolfagharinia, H. (2017). Blood inventory management in hospitals: Considering supply and demand uncertainty and blood transshipment possibility. Operations Research for Health Care, 15, 43-56.
    Noble, W. S. (2006). What is a support vector machine? Nature biotechnology, 24(12), 1565.
    Pereira, A. (2004). Performance of time‐series methods in forecasting the demand for red blood cell transfusion. Transfusion, 44(5), 739-746.
    Pinson, S., Pierskalla, W., & Schaefer, B. (1972). A computer simulation anaysis of blood bank inventory policies. Evanston (IL): Department of Industrial Engineering and Management Sciences, Northwestern University.
    Prastacos, G. P. (1984). Blood inventory management: an overview of theory and practice. Management Science, 30(7), 777-800.
    Rajasekaran, S., Gayathri, S., & Lee, T.-L. (2008). Support vector regression methodology for storm surge predictions. Ocean Engineering, 35(16), 1578-1587.
    Rajendran, S., & Ravindran, A. R. (2017). Platelet ordering policies at hospitals using stochastic integer programming model and heuristic approaches to reduce wastage. Computers & Industrial Engineering, 110, 151-164.
    Ravindran, A. R., & Warsing Jr, D. P. (2012). Supply chain engineering: Models and applications: CRC Press.
    Silva Filho, O. S., Carvalho, M. A., Cezarino, W., Silva, R., & Salviano, G. (2013). Demand forecasting for blood components distribution of a blood supply chain. IFAC Proceedings Volumes, 46(24), 565-571.
    Sirelson, V., & Brodheim, E. (1991). A computer planning model for blood platelet production and distribution. Computer methods and programs in biomedicine, 35(4), 279-291.
    Soleimani, H., Seyyed-Esfahani, M., & Shirazi, M. A. (2013). Designing and planning a multi-echelon multi-period multi-product closed-loop supply chain utilizing genetic algorithm. The International Journal of Advanced Manufacturing Technology, 68(1-4), 917-931.
    Taleizadeh, A. A., Niaki, S. T. A., Aryanezhad, M.-B., & Shafii, N. (2013). A hybrid method of fuzzy simulation and genetic algorithm to optimize constrained inventory control systems with stochastic replenishments and fuzzy demand. Information sciences, 220, 425-441.
    TBC. (2016). 2016 Annual Report. Retrieved from http://intra.blood.org.tw/upload/65b59294-cb0d-44d1-b825-3321f4e432f7.pdf
    Tetteh, G. A. (2008). Optimal allocation of blood products: New Jersey Institute of Technology.
    Van Dijk, N., Haijema, R., Van Der Wal, J., & Sibinga, C. S. (2009). Blood platelet production: a novel approach for practical optimization. Transfusion, 49(3), 411-420.
    Van Zyl, G. J. (1963). Inventory control for perishable commodities. Retrieved from
    Vapnik, V. (2013). The nature of statistical learning theory: Springer science & business media.
    Yang, P., Wee, H.-M., Pai, S., & Tseng, Y. (2011). Solving a stochastic demand multi-product supplier selection model with service level and budget constraints using Genetic Algorithm. Expert Systems with Applications, 38(12), 14773-14777.

    QR CODE