簡易檢索 / 詳目顯示

研究生: 林睿
LIN JUI
論文名稱: 缸內噴油機車引擎的計算與實驗分析
Computational and Experimental Analyses of a GDI Motorcycle Engine
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 許清閔
none
陳佳堃
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 268
中文關鍵詞: 機車引擎缸內噴油
外文關鍵詞: motorcycle engine, gasoline direct injection
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以計算與實驗方法探討機車引擎缸內直噴技術的可行性。標的設備是一部四閥四行程250cc之進氣歧管噴油引擎,若要改裝為缸內直噴引擎,需要修改許多參數,並考慮引擎操作模態是在homogeneous charge或者stratified charge。其中較重要的參數包括: (一)引擎壓縮比、(二)進排氣渦流強度、(三)噴油嘴安裝位置與角度、(四) 噴油壓力、噴油時機、噴油時程與噴油量、(五)火星塞安裝位置與點火時機、(六)活塞頭形狀。本研究所要探討的參數是噴油壓力、噴油時機、噴油時程與噴油量以及活塞頭形狀。使用STAR-CD模擬軟體計算引擎安裝平面活塞頭並噴油時,汽缸內在不同曲軸角度的油氣濃度分佈以及油滴粒徑大小。經由判斷較佳的油氣分佈均勻度以及較小的油滴粒徑,得到最佳化的噴油時機為CAinj = 80°,此一最佳化的噴油時機可以給homogeneous charge操作模態使用。另外設計16種不同形狀的活塞頭,計算油氣的濃度分佈是否於火星塞處。此一形狀的活塞頭可以供給 stratified charge使用。對一個多孔式汽車引擎用的噴油嘴,進行缸外噴油特性實驗研究,將所獲得的噴油時機延遲數據輸入機車引擎的計算。進行安裝噴嘴以及平面活塞頭時的homogeneous charge引擎性能實驗。結果顯示,在非怠速時,若噴油壓力Pf = 18 bar且CAinj = 81°,引擎的扭力、馬力、油耗、排氣均可達到最佳值。在怠速時,CAinj必須提前至66°才能得到較低的廢氣排放值。由於引擎設計的其他參數並未修改,所以怠速時的廢氣排放值(HC = 326 ppm、CO = 1.07 %)稍高於原來的進氣歧管噴油引擎的廢氣排放值(HC = 262 ppm、CO = 0.16 %),但已經遠低於第五幾期法規的上限值(HC≦1200 ppm、CO≦2.5 %)。在非怠速(轉速為3000 RPM)的固定扭力(13.9 N-m)實驗結果顯示,單位制動油耗(bsfc)可以達到比進氣歧管噴油引擎更低的數值。例如噴油壓力30 bar時,缸內噴油引擎以及進氣歧管噴油引擎的bsfc分別是410 g/kw×h及653 g/kw×h,相差37%,在缸內直噴引擎廢氣排放值(HC = 372 ppm、CO = 1.56 %)稍高於進氣歧管噴油引擎的廢氣排放值(HC = 415 ppm、CO = 0.77 %)。


Computational and experimental approaches were used to study the feasibility of applying the gasoline direction injection (GDI) technique to a motorcycle engine. The target device was a four-valve, four-stroke, port-injection engine with a displacement volume of 250cc. Several important differences existed between a GDI engine and a port-injection engine, for examples, (1) compression ratio, (2) vortex strengths of intake port and exhaust port, (3) injector location and angle, (4) injection pressure, injection timing, injection period, and injected fuel mass flow rate, (5) spark plug ignition timing and location of spark plug, (6) configurations of piston head, etc. The parameters of injection pressure, injection timing, injection period, and injected fuel mass flow rate as well as the configurations of piston head were considered in this study. The STAR-CD CFD code was used to calculate the fuel distribution and droplet size to obtain the optimized injection timing for the homogenous charge operation. The optimized injection time was 80o of crank angle. Totally sixteen piston head configurations were designed and optimized to obtain the best fuel concentration around the spark ignition location or the stratified charge operation. The engine test showed that the optimized ignition timing was 81o of crank angle for the homogeneous charge operation using a flat piston head. At idle, the optimized injection time was 66o of crank angle so that low exhaust concentrations (HC = 326 ppm, CO = 1.07%) were detected. These values were significantly lower than the thresholds of the latest regulations. The results of constant-torque engine tests at the engine speed of 3000 RPM showed that the break specific fuel consumption (bsfc) of the GDI engine was significantly smaller that of the port-injection engine by about 37%. The exhaust concentrations of HC and CO of these two engines were similar. Should the compression ratio, injector location & angle, vortex strength of in-cylinder flow, spark plug ignition timing and location of spark plug are further modified, drastic improvements on the power output, fuel consumption, and exhaust may be expected.

摘要 i Abstract iii 誌謝 iv 目錄 v 符號索引 viii 表圖索引 xii 第一章 緒 論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目的 7 第二章 計算模擬之模型與方法 8 2.1 標的引擎 8 2.1.1 引擎規格 8 2.1.3 噴嘴型式 8 2.2 計算流力軟體簡介 9 2.3 統御方程式 10 2.3.1 紊流模式 12 2.3.2 液滴分裂模型 14 2.3.3液滴與壁面交互作用模型 16 2.4 數值求解方法 18 2.4.1 離散化方程式 18 2.4.2 PISO解法理論 20 2.4.3 收斂標準 26 2.5 網格與條件 27 2.5.1 計算網格 27 2.5.2 邊界條件 28 2.5.3 初始條件 29 2.5.4 取像相位與座標定義 29 第三章 平面活塞頭缸內氣流濃度的計算結果 36 3.1 冷流場無噴油之計算結果 36 3.1.1 正面對稱面(z=0)缸內流場結構與衍化過程 36 3.2 Homogeneous injection噴油策略 38 3.3 油氣濃度分佈 38 3.3.1噴油開始角度CA inj = 12° 38 3.2.2噴油開始角度CA inj = 27° 39 3.2.3噴油開始角度CA inj = 46° 40 3.2.4噴油開始角度CA inj = 80° 42 3.2.5噴油開始角度CA inj = 90° 43 3.2.6噴油開始角度CA inj = 147° 44 3.3 濃度空間分佈變異值 46 3.4燃油液滴缸內平均粒徑SMD變化 46 第四章 凹面活塞頭設計 47 4.1 Stratified injection策略 47 4.2 凹面活塞頭的油氣濃度分佈 47 4.2.1 #1凹面活塞頭的油氣濃度分佈 47 4.3.2 #2凹面活塞頭的油氣濃度分佈 48 4.3.3 #3凹面活塞頭的油氣濃度分佈 49 4.3.4 #4凹面活塞頭的油氣濃度分佈 49 4.3.5 #5凹面活塞頭的油氣濃度分佈 50 4.3.6 #6凹面活塞頭的油氣濃度分佈 51 4.3.7 #7凹面活塞頭的油氣濃度分佈 51 4.3.8 #8凹面活塞頭的油氣濃度分佈 52 4.3.9 #9凹面活塞頭的油氣濃度分佈 53 4.3.10 #10凹面活塞頭的油氣濃度分佈 54 4.3.11 #11凹面活塞頭的油氣濃度分佈 54 4.3.12 #12凹面活塞頭的油氣濃度分佈 55 4.3.13 #13凹面活塞頭的油氣濃度分佈 56 4.3.14 #14凹面活塞頭的油氣濃度分佈 56 4.3.15 #15凹面活塞頭的油氣濃度分佈 57 4.3.16 #16凹面活塞頭的油氣濃度分佈 58 第五章 實驗設備、儀器與方法 59 5.1 引擎型式與規格 59 5.2 供油系統 59 5.3 點火系統 60 5.4 電子噴射裝置系統 61 5.5 數據擷取系統 61 5.6 電子微量天秤 61 5.7 高速攝影系統 62 5.8 動力計系統 62 5.9 廢氣分析系統 63 5.10 引擎基本性能參數定義 63 5.10.1 制動扭矩(brake torque) 63 5.10.2 制動馬力(brake horsepower) 63 5.10.3 單位制動燃料消耗量(brake specific fuel consumption) 64 5.10.4制動平均有效壓力(brake mean effective pressure) 64 第六章 噴油嘴特性 66 6.1 缸外噴油量分析 66 6.2 缸外噴油量之噴油延遲特性 66 6.2.1 缸外噴油訊號及延遲特性分析 67 6.2.2 缸外模擬引擎轉速對噴油延遲時間特性分析 70 第七章 引擎性能測試結果 71 7.1 不同油門開度時引擎時的引擎性能 71 7.1.1 扭矩 71 7.1.3 油耗 73 7.1.4 單位制動油耗 74 7.1.5 排放物 74 7.1.6空燃比 77 7.1.7 制動平均有效壓力 79 7.2固定扭力時(bmep)引擎性能的測試結果 80 7.2.1排放物 80 第八章 結論與建議 82 8.1 結論 82 8.1.1 平面活塞頭缸內氣流濃度的計算結果 82 8.1.2 凹面活塞頭設計 83 8.1.3 噴油嘴特性 83 8.1.4 不同開度時的引擎性能測試結果 83 8.1.5 固定扭力(bmep)時的引擎性能測試結果 84 8.2 建議 84 參考文獻 86  

[1] Mayer, H., “Air pollution in cities,” Atmospheric Environment, Vol. 33, No. 24, 1999, pp. 4029-4036.
[2] Shimotani, K., Yoshio, K., Oikawa, K., and Horada., O “Characteristics of gasoline in-cylinder direct engine,” Vol 17, No, 3, 1996, pp. 267–272
[3] Takagi, Y., “The role of mixture formation in improving fuel economy and reducing emissions of automotive S.I. engines,” FISITA Technical Paper, No. P0109, 1996.
[4] Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, NY, 1988.
[5] Heywood, J. B., “Fluid motion within the cylinder of internal combustion engines-The 1986 freeman scholar lecture,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
[6] Han, Z. and Reitz, R. D., “Effects of injection timing on air-fuel mixing in a direct-injection spark-ignition engine,” SAE Paper No. 970625, 1997.
[7] Han, Z., Fan, L., and Reitz, R. D., “Multidimensional modeling of spray atomization and air-fuel mixing in a direct-injection spark-ignition engine,” SAE Paper No. 970884, 1997.
[8] Papageorgakis, G. and Assanid, D. N., “Optimizing gaseous fuel-air mixing in direct injection engines using an RNG based k-ε model,” SAE Paper No. 980135, 1998.
[9] Tomoda, T., Sasaki, S., Sawada, D., Saito, A., and Sami, H. “Development of direct injection gasoline engine - study of stratified mixture formation,” SAE Paper No. 970539, 1997.
[10] Harada, J., Tomita, T., Mizuno, H., Mashiki, Z. and Ito, Y., “Development of direct injection gasoline engine,” Journal of Engine, SAE Paper No. 970540, 1997.
[11] Ohsuga, M., Shiraishi, T. Nogi, T., Nakayama, Y. and Sukegawa, Y., “Mixture preparation for direct-injection SI engine,” SAE, Paper No. 970542, 1997.
[12] Rotondi, R. and Bella, G.,“Gasoline direct injection spray simulation ,”
International Journal of Thermal Sciences, Vol. 45, February, 2006, pp. 168-179.
[13] Yi, J. and Munoz, R. H., “Effect of compression ratio on stratified-charge direct-injection gasoline combustion,” SAE Paper No. 2005-01-0100, 2005.
[14] Heechang, O. and Choongsik, B., “Effects of the injection timing on spray and combustion characteristics in a spray-guided DISI engine under lean-stratified operation,” Fuel, Vol. 107, May, 2013, pp. 225–235
[15] 邱彥凱,二閥單缸機車引擎的缸內直噴技術發展,國立台灣科技大學機械工程技術研究所碩士論文,台北,台灣, 2008。
[16] 林子維,實驗和計算方法於缸內噴油引擎噴油時機之探討,國立台灣科技大學機械工程技術研究所碩士論文,台北,台灣, 2008。
[17] 陳家豪,引擎缸內噴油之設計與分析, 國立台灣科技大學機械工程技術研究所碩士論文,台北,台灣, 2011。
[18] 沈昆弘,四閥四行程機車引擎瞬間流場與缸內噴油特性的計算與實驗分析,國立台灣科技大學機械工程技術研究所碩士論文, 台北, 台灣, 2012。
[19] 林韋丞,缸內噴油引擎的實驗與計算分析,國立台灣科技大學機械工程技術研究所碩士論文,台北,台灣,2012。
[20] Warsi, Z. U. A., “Conservation form of the Navier-Stokes equations in general nonesteady coordinates,” AIAA Journal, Vol. 19, No. 2, 1981, pp.240-242.
[21] Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas flow simulation and visualization in cylinder of motor-cycle engine,” SAE Paper No. 2004-32-0004, 2004.
[22] Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-dynamic analysis of the intake system for a HDDI diesel engine by STAR-CD code and LDA technique,” SAE Paper No. 2003-01-0002, 2003.
[23] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, 1995.
[24] Kurniawan, W. H., Abdullah, S. and Shamsudeen, A., “A computational fluid dynamics study of cold-flow analysis for mixture preparation in a motored four-stoke direct injection engine,” Journal of Applied Science 7, Vol. 19, 2007, pp. 2710-2724.
[25] Turns, S, R., An Introduction to Combustion: Concepts and Applications, 3th ed., McGraw-Hill, New York, NY, 2000, pp. 236-237.
[26] Dodge, L. G., “Fuel preparation requirement for direct-injected spark ignition engines,” SAE Paper, No. 962015.

無法下載圖示 全文公開日期 2019/06/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE