簡易檢索 / 詳目顯示

研究生: 張少軒
Shao-Hsuan Chang
論文名稱: 含磷廢液合成高純度磷酸銨鎂
Recovery of phosphate as struvite from semiconductor wastewater
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 村岡雅弘
Masahiro Muraoka
許詩韓
Shin-Han Hsu
李奇旺
Chi-Wang Li
劉志成
Jhy-Chern Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 116
中文關鍵詞: 磷酸鹽PHREEQC規模放大系統鳥糞石廢水
外文關鍵詞: phosphate, Ammonia, PHREEQC, pilot scale system, struvite, wastewater
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要在開發一種新的電子工業用磷酸鹽和含銨廢水的處理技術,以生產高純度的鳥糞石。結合來自相同來源的含氨廢水,含磷廢水,加入氯化鎂,以誘導磷酸銨鎂(MgNH4PO4,鳥糞石)沉澱。實驗結果表明,當[PO4-3]:[Mg2+]:[NH4+]的摩爾比為1:1:1和pH 9時,磷酸鹽在初始磷酸鹽濃度為1,000~20,000 mg/L時去除率為80~90%。另外,當初始磷酸鹽濃度增加時,所得產物的形態從棒狀轉變為細顆粒。因此,可以得出結論,初始磷酸鹽濃度是關鍵參數,並且顆粒尺寸和形態之間存在強相關性。通過FESEM、XRD和濕式化學分析證實了在不同反應條件下產生的鳥糞石的形成。用PHREEQC對理論平衡進行建模,並與實驗結果進行比較。我們也設計了由10公升反應器組成的規模放大系統,化學品也採用工業級,我們評估了放大系統在工廠中的潛在應用。但磷酸鹽的回收磷酸鹽,殘餘磷酸濃度超過台灣放流水標準。我們建議採用二階段串聯沉澱裝置,其中加入氯化鈣以誘導磷灰石(Ca5(PO4)3OH)的形成。


The proposed study aims to develop a novel treatment technology for phosphate and ammonium-containing wastewaters from electronics industries to produce high- purity struvite. Combining ammonia-containing wastewater phosphate-containing wastewater from an identical source, it will be dosed with magnesium chloride to induce precipitation of magnesium ammonia phosphate (MgNH4PO4, struvite), a potentially reusable mineral. Experimental results indicated that when molar ratio of [PO4-3]:[Mg2+]:[NH4+] of 1:1:1 and pH 9, phosphate were removed 80~90 % at initial phosphate concentration from 1,000 to 20,000 mg/L. Moreover, when initial phosphate concentration increased, the morphology of the obtained products was shifted from rod-shaped to a fine particle. Therefore, it could be concluded that initial phosphate concentrations was a critical parameter and there was a strong correlation between particle size and morphology. The formation of struvite, as produced under different reaction conditions, were confirmed by FESEM, XRD, and wet chemical analysis. Theoretical equilibria were modeled with PHREEQC and compared with experimental results. A pilot scale system consisting of a 10-dm3 reactor was used. Not only the volume of wastewater was from 500 ml to 10 L, but also industrial grade chemicals were used. The scale-up system was evaluated for potential applications in the factory. However, recovery of phosphate as magnesium phosphate, the effluent cannot meet of effluent standards of Taiwan EPA. To ensure effluent quality, a 2-stage in-series precipitation unit is proposed in which calcium chloride is added to induce the formation of hydroxyapatite (Ca5(PO4)3OH).

摘要 I Abstract II Acknowledgment III Contents IV FIGURE OF CONTENTS VI TABLE OF CONTENTS VIII CHAPTER 1 1-1 1.1 Background 1-1 1.2 Objectives 1-1 CHAPTER 2 2-1 2.1 Phosphorus 2-1 2.2 Removal and recovery of phosphate 2-4 2.2.1 Phosphate in wastewater 2-4 2.2.2 Processes for removal and recovery of phosphate 2-5 2.2.3 Precipitation of struvite 2-5 2.3 Field trip: A case study in Gifu, Japan 2-8 2.4 Full-scale plants 2-12 CHAPTER 3 3-1 3.1 Materials and reagents 3-1 3.2 Instruments 3-2 3.3 Source of phosphate waste acid and waste ammonium 3-3 3.4 Methods 3-5 3.4.1 Experimental framework and procedures 3-5 3.4.2 Bench scale system 3-7 3.4.3 Pilot scale system 3-10 3.4.4 Sample Analysis 3-13 3.4.4.1 ICP-AES analysis 3-13 3.4.4.2 FESEM-EDS analysis 3-13 3.4.4.3 Image J 3-14 3.4.4.4 X-ray diffraction (XRD) 3-14 3.4.4.5 Turbidity analysis 3-15 3.4.4.6 Nitrogen-ammonia Nessler method 3-15 3.4.4.7 Zone settling velocity (ZSV) 3-16 3.5 Thermodynamic modeling software (PHREEQC) 3-17 CHAPTER 4 4-1 4.1 PHREEQC thermodynamic modeling 4-1 4.2 Bench scale system 4-3 4.2.1 Control experiment for ammonium volatilization 4-3 4.2.2 Effect of pH value 4-4 4.2.3 Effect of initial phosphate concentration 4-11 4.3 Pilot scale system 4-18 4.3.1 Effect of initial phosphate concentration and industrial grade MgCl2 4-18 CHAPTER 5 5-1 5.1 Conclusions 5-1 5.2 Recommendations 5-2 REFERENCE R-1 APPENDIX A A-1 APPENDIX B B-1 APPENDIX C C-1 APPENDIX D D-1

Abbona, F., & Boistelle, R. (1979). Growth morphology and crystal habit of struvite crystals (MgNH4PO4· 6 H2O). Journal of Crystal Growth, 46(3), 339-354.
Abbona, F., Madsen, H. L., & Boistelle, R. (1982). Crystallization of two magnesium phosphates, struvite and newberyite: Effect of pH and concentration. Journal of Crystal Growth, 57(1), 6-14.
Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257-275.
Blöcher, C., Niewersch, C., & Melin, T. (2012). Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration. Water Research, 46(6), 2009-2019.
Centre Europeen d’Etudes des Polyphosphates, the European Chemical Industry Council (CEEP). (2003). Retrieved from http://www.nhm.ac.uk/mineralogy/phos.
Çelen, I., & Türker, M. (2001). Recovery of ammonia as struvite from anaerobic digester effluents. Environmental Technology, 22(11), 1263-1272.
Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19(2), 292-305.
Crutchik, D., & Garrido, J. M. (2016). Kinetics of the reversible reaction of struvite crystallisation. Chemosphere, 154, 567-572.
Dai, H., Lu, X., Peng, Y., Zou, H., & Shi, J. (2016). An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors. Chemosphere, 165, 211-220.
De-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 38(19), 4222-4246.
Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., & Meesschaert, B. (2015). Global phosphorus scarcity and full-scale P-recovery techniques: a review. Critical Reviews in Environmental Science and Technology, 45(4), 336-384.
Dhanaraj, G., Byrappa, K., Prasad, V., & Dudley, M. (Eds.). (2010). Springer handbook of crystal growth. Springer Science & Business Media.
Doyle, J. D., & Parsons, S. A. (2002). Struvite formation, control and recovery. Water Research, 36(16), 3925-3940.
Gunay, A., Karadag, D., Tosun, I., & Ozturk, M. (2008). Use of magnesit as a magnesium source for ammonium removal from leachate. Journal of Hazardous Materials, 156(1-3), 619-623.
Hao, X. D., Wang, C. C., Lan, L., & Van Loosdrecht, M. C. M. (2008). Struvite formation, analytical methods and effects of pH and Ca2+. Water Science and Technology, 58(8), 1687-1692.
Huang, H., Xiao, D., Zhang, Q., & Ding, L. (2014). Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. Journal of Environmental Management, 145, 191-198.
Hutnik, N., Kozik, A., Mazienczuk, A., Piotrowski, K., Wierzbowska, B., & Matynia, A. (2013). Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process. Water Research, 47(11), 3635-3643.
Heffer, P., & Prud’homme, M. (2018, June). Fertilizer Outlook 2018–2022. In 86th IFA Annual Conference, Berlin, Germany (pp. 1-5).
Karl, D. M. (2000). Aquatic ecology: Phosphorus, the staff of life. Nature, 406(6791), 31.
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477.
Lei, Y., Hidayat, I., Saakes, M., van der Weijden, R., & Buisman, C. J. (2019). Fate of calcium, magnesium and inorganic carbon in electrochemical phosphorus recovery from domestic wastewater. Chemical Engineering Journal, 362, 453-459.
Li, B., Huang, H. M., Boiarkina, I., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254.
Liu, J. C. (2009). Recovery of phosphate and ammonium as struvite from semiconductor wastewater. Separation and Purification Technology, 64(3), 368-373.
Loganathan, P., Vigneswaran, S., Kandasamy, J., & Bolan, N. S. (2014). Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology, 44(8), 847-907.
Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., Yamamoto, K., & Nghiem, L. D. (2016). Phosphorus and water recovery by a novel osmotic membrane bioreactor–reverse osmosis system. Bioresource Technology, 200, 297-304.
Mamais, D., Pitt, P. A., Cheng, Y. W., Loiacono, J., & Jenkins, D. (1994). Determination of ferric chloride dose to control struvite precipitation in anaerobic sludge digesters. Water Environment Research, 66(7), 912-918.
Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Struvite precipitation assessment in anaerobic digestion processes. Chemical Engineering Journal, 141(1-3), 67-74.
Martí, N., Barat, R., Seco, A., Pastor, L., & Bouzas, A. (2017). Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants. Journal of Environmental Management, 196, 340-346.
McCuen, R. H. (2004). Phosphorus in Environmental Technologies: Principles and Applications. Journal of the American Water Resources Association, 40(5), 1393.
Mulkerrins, D. D. A. C. E., Dobson, A. D. W., & Colleran, E. (2004). Parameters affecting biological phosphate removal from wastewaters. Environment International, 30(2), 249-259.
Muster, T. H., Douglas, G. B., Sherman, N., Seeber, A., Wright, N., & Güzükara, Y. (2013). Towards effective phosphorus recycling from wastewater: quantity and quality. Chemosphere, 91(5), 676-684.
Musvoto, E. V., Wentzel, M. C., & Ekama, G. A. (2000). Integrated chemical–physical processes modelling—II. simulating aeration treatment of anaerobic digester supernatants. Water Research, 34(6), 1868-1880.
Myerson, A. (2002). Handbook of industrial crystallization. Butterworth-Heinemann, United Kingdom.
Nakagawa, H., & Ohta, J. (2019). Phosphorus Recovery from Sewage Sludge Ash: A Case Study in Gifu, Japan. In Phosphorus Recovery and Recycling (pp. 149-155). Springer, Singapore.
Nelson, N. O., Mikkelsen, R. L., & Hesterberg, D. L. (2003). Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg: P ratio and determination of rate constant. Bioresource Technology, 89(3), 229-236.
Ohtake, H., & Okano, K. (2015). Development and implementation of technologies for recycling phosphorus in secondary resources in Japan. Global Environmental Research, 19(1), 49-65.
Ohtake, H., & Tsuneda, S. (Eds.). (2019). Phosphorus Recovery and Recycling. Springer, Singapore.
Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781.
Price, S. L. (2018). Is zeroth order crystal structure prediction (CSP_0) coming to maturity? What should we aim for in an ideal crystal structure prediction code?. Faraday Discussions, 211, 9-30.
Prywer, J., Torzewska, A., & Płociński, T. (2012). Unique surface and internal structure of struvite crystals formed by proteus mirabilis. Urological Research, 40(6), 699-707.
Quintana, M., Sanchez, E., Colmenarejo, M. F., Barrera, J., Garcia, G., & Borja, R. (2005). Kinetics of phosphorus removal and struvite formation by the utilization of by-product of magnesium oxide production. Chemical Engineering Journal, 111(1), 45-52.
Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Ra, C. S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization–A review. Arabian Journal of Chemistry, 7(1), 139-155.
Regy, S., Mangin, D., Klein, J. P., Lieto, J., & Thornton, C. (2002). Phosphate recovery by struvite precipitation in a stirred reactor. Laboratoire d’Automatiqueet de Genie des Procedes (LAGEP), 1-65.
Ryu, H. D., Kim, D., & Lee, S. I. (2008). Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater. Journal of Hazardous Materials, 156(1-3), 163-169.
Shaddel, S., Ucar, S., Andreassen, J. P., & Østerhus, S. W. (2019). Engineering of struvite crystals by regulating supersaturation–correlation with phosphorus recovery, crystal morphology and process efficiency. Journal of Environmental Chemical Engineering, 7(1), 102918.
Shih, K., & Yan, H. (2016). The crystallization of struvite and its analog (k-struvite) from waste streams for nutrient recycling. In Environmental Materials and Waste. Academic Press, (pp. 665-686).
Smit, A. L., Bindraban, P. S., Schröder, J. J., Conijn, J. G., & Van der Meer, H. G. (2009). Phosphorus in agriculture: global resoources, trends and developments. Plant Research International B.V., Wageningen, 282, 1-36..
Türker, M., & Çelen, I. (2007). Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate. Bioresource Technology, 98(8), 1529-1534.
Talboys, P. J., Heppell, J., Roose, T., Healey, J. R., Jones, D. L., & Withers, P. J. (2016). Struvite: a slow-release fertiliser for sustainable phosphorus management?. Plant and Soil, 401(1-2), 109-123.
Tarayre, C., De Clercq, L., Charlier, R., Michels, E., Meers, E., Camargo-Valero, M., & Delvigne, F. (2016). New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresource Technology, 206, 264-274.
Tirado, R., & Allsopp, M. (2012). Phosphorus in agriculture: problems and solutions. Greenpeace Research Laboratories Technical Report (Review), 2.
Toze, S. (2006). Reuse of effluent water—benefits and risks. Agricultural Water Management, 80(1-3), 147-159.
TÜRKER, M., & ERDEM, İ. Ç. (2011). Chemical equilibrium model of struvite precipitation from anaerobic digester effluents. Turkish Journal of Engineering and Environmental Sciences, 35(1), 39-48.
Uludag-Demirer, S., & Othman, M. (2009). Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation. Bioresource Technology, 100(13), 3236-3244.
US Geological Survey. (2009). Mineral Commodity Summaries, 2019. Government Printing Office.
van Dijk, K. C., Lesschen, J. P., & Oenema, O. (2016). Phosphorus flows and balances of the European Union Member States. Science of the Total Environment, 542, 1078-1093.
Wang, J., Burken, J. G., Zhang, X., & Surampalli, R. (2005). Engineered struvite precipitation: Impacts of component-ion molar ratios and pH. Journal of Environmental Engineering, 131(10), 1433-1440.
Yetilmezsoy, K., & Sapci-Zengin, Z. (2009). Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. Journal of Hazardous Materials, 166(1), 260-269.
Zhang, T., Ding, L., Ren, H., & Xiong, X. (2009). Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology. Water Research, 43(20), 5209-5215.
Zhou, K. (2018). Phosphorus recovery from wastewater and sludge: Concept for different regional conditions (Doctoral dissertation). Technical University of Berlin, Berlin, Germany.

無法下載圖示 全文公開日期 2024/08/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE