簡易檢索 / 詳目顯示

研究生: 羅應陞
Ying-Sheng Luo
論文名稱: 直觀且易於安裝的開窗及燈光控制系統
Intuitive and Easily-Installed Fenestration and Light Control Framework
指導教授: 賴祐吉
Yu-Chi Lai
口試委員: 邱韻祥
Yun-Shang Chiou
姚智原
Chih-Yuan Yao
朱宏國
Hung-Kuo Chu
黃大源
Da-Yuan Huang
賴祐吉
Yu-Chi Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 78
中文關鍵詞: 非線性最佳化即時全局照明球諧函數眩光分析
外文關鍵詞: Nonlinear Optimization, Real-time global illumination, Spherical harmonics, Glare analysis
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 良好的照明規劃可讓空間舒適明亮,有效且均齊地引入自然光,除了避免眩光問題造成視覺上的不適感外,可以讓人與環境聯結,建立時間感,使人心情開朗和充滿活力與朝氣,更可以節省室內燈光的耗能。本研究的目標是透過百葉窗戶與室內燈具控制的即時模擬達成節能與視覺舒適的最佳室內照明。相較於市售自動控光系統使用數個測光點估算,無法確實量測室內光分布的均齊性,相關建築研究採用感測器迴路達成自動控制的作法更是需要仰賴專業知識擺設感測器,且控制過程需要持續反饋當前照明狀態來修正結果。而採用全場域生成渲染估算的模擬方法,則因單一控制估算需要數分鐘至數小時的計算時間,無法於實務上達到即時反饋。本研究在給定之建築場景、百葉窗戶位置、室內光源位置及耗能資訊、工作區域標註與室內觀測位置及方向後透過拆解窗戶控制與自然光源兩相依函數預計算複雜光線傳遞反應,以即時估算動態自然光環境下任意控制參數的照明結果,並使用最佳化分析法計算當前環境下符合節能且舒適照明目標的最佳控制參數,達成直覺且不仰賴控制反饋的開窗及燈光控制系統。為避免連續控制因快速照明變化帶來的不適感,本研究將上個最佳化控制結果作為下次最佳化分析的輸入來達成時序上連貫的控制。實驗設計中本研究根據建築師指示設計常見有日照需求的室內環境來驗證方法在各式日照時段及不同建築開窗方位下的最佳控制結果。


    Good interior illumination can let residents and audience feel bright and comfortable. Introducing daylighting can make residents connect with time and environments but inadequate daylight guiding may result in daylighting glare. Nowadays, commercially available daylighting controllers using “spot measurement” cannot measure luminance distribution. Furthermore, predicting the lighting of a shot under controlled parameters using physically-based light transportation takes minutes to hours. This makes it impossible for real-time prediction and control. Traditionally, architects properly introduce daylights for perceptual comfort and energy conservation with a complex sensor-feedback control algorithm required precise placement of various sensors.
    This work develops an intuitive and easily-installed one-step blind and light control framework which formulates illumination level, lighting distribution, and energy consumption as cost functions while real-time evaluating control-affected lighting using shadow mapping sun radiance reconstruction, visibility-convolved spherical harmonic sky lighting, and precomputed interior lighting. Our system can directly select the optimal control states using mesh adaptive direct searching while having the states of the previous period as initials for temporal control coherence to minimize mechanical adjustment and adapting discomfort. While testing on architect-recommended scenes and target surfaces with captured daylights and sun-window movements, our framework can automatically and optimally select blinds' and lights' states after easily and intuitively setting the environment, control states, and target surfaces and view points.

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi 符號標記使用說明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 問題定義 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 主要貢獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 相關研究. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2.1 基於物理之全局照明(Physically-based Global Illumination) . . . . . . . . 5 2.2 基於環境光全局照明(Environment Lighting) . . . . . . . . . . . . . . . . 6 2.3 基於預算全局照明(Precomputation Lighting) . . . . . . . . . . . . . . . .7 2.4 燈光設計(Lighting Design) . . . . . . . . . . . . . . . . . . . . . . . .8 2.5 眩光預估指數(Glare prediction Index) . . . . . . . . . . . . . . . . . . 9 3 方法總覽. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 4 光源貢獻計算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 自然光源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.1 自然光源的資料擷取 . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.2 太陽光貢獻計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4.1.3 天光貢獻計算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 室內光源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 最佳化控制參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 5.1 目標函數的設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 5.1.1 最適平均亮度成本函數. . . . . . . . . . . . . . . . . . . . . . . . . .32 5.1.2 眩光評估指標成本函數. . . . . . . . . . . . . . . . . . . . . . . . . .37 5.1.3 室內燈具耗能成本函數. . . . . . . . . . . . . . . . . . . . . . . . . .42 5.2 符合時序連貫性的混合整數非線性最佳化 . . . . . . . . . . . . . . . . . . 44 6 實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 7 結論與未來工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    [1] M. Konstantoglou, A. Kontadakis, and A. Tsangrassoulis, “Counterbalancingdaylighting, glare and view out: the role of an external shading system controlstrategy,” Clima, pp. 16–19, 2013.
    [2] E. Lee, B. Coffey, L. Fernandes, S. Hoffman, A. McNeil, A. Thanachareonkit,and G. Ward, “High performance building fa¸cade solutions-phase ii,” tech. rep.,Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2014.
    [3] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” SIGGRAPH Computer Graphics, vol. 18, pp. 137–145, 1984.
    [4] G. J. Ward and R. D. Clear, “A ray tracing solution for diffuse interreflection,”SIGGRAPH Computer Graphics, vol. 22, pp. 85–92, 2008.
    [5] J. T. Kajiya, “The rendering equation,” SIGGRAPH Computer Graphics,vol. 20, pp. 143–150, 1986.
    [6] S. Laine, H. Saransaari, J. Kontkanen, J. Lehtinen, and T. Aila, “Incrementalinstant radiosity for real-time indirect illumination,” in Proceedings of the 18thEurographics conference on Rendering Techniques, pp. 277–286, 2007.
    [7] E. Veach and L. Guibas, “Bidirectional estimators for light transport,” in Photorealistic Rendering Techniques, Springer, 1995.
    [8] E. Veach and L. J. Guibas, “Metropolis light transport,” in Proceedings ofthe 24th annual conference on Computer graphics and interactive techniques,pp. 65–76, 1997.61
    [9] M. F. Cohen and D. P. Greenberg, “The hemi-cube: A radiosity solution forcomplex environments,” SIGGRAPH Computer Graphics, vol. 19, pp. 31–40,1985.
    [10] D. S. Immel, M. F. Cohen, and D. P. Greenberg, “A radiosity method for nondiffuse environments,” SIGGRAPH Computer Graphics, vol. 20, pp. 133–142,1986.
    [11] E. P. Lafortune and Y. D. Willems, “Bi-directional path tracing,” in Proceedingsof Third International Conference on Computational Graphics And Visualization Techniques, pp. 145–153, 1993.
    [12] A. Keller, “Instant radiosity,” in Proceedings of the 24th annual conference onComputer graphics and interactive techniques, pp. 49–56, 1997.
    [13] B. Segovia, J. C. Iehl, R. Mitanchey, and B. P´eroche, “Bidirectional instantradiosity,” in In Proceedings of the 17th Eurographics Workshop on Rendering,pp. 389–398, 2006.
    [14] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. P. Greenberg, “Lightcuts: A scalable approach to illumination,” ACM Transactions onGraphics (TOG), vol. 24, no. 3, pp. 1098–1107, 2005.
    [15] M. Haˇsan, F. Pellacini, and K. Bala, “Matrix row-column sampling for themany-light problem,” ACM Transactions on Graphics (TOG), vol. 26, 2007.
    [16] J. Ou and F. Pellacini, “Lightslice: Matrix slice sampling for the many-lightsproblem,” ACM Transactions on Graphics (TOG), vol. 30, pp. 179:1–179:8,2011.62
    [17] H. W. Jensen, “Global illumination using photon maps,” in Proceedings of theEurographics Workshop on Rendering Techniques, pp. 21–30, Springer-Verlag,1996.
    [18] T. Hachisuka and H. W. Jensen, “Progressive photon mapping,” ACM Transactions on Graphics (TOG), vol. 27, pp. 130:1–130:8, 2008.
    [19] T. Hachisuka and H. W. Jensen, “Stochastic progressive photon mapping,”ACM Transactions on Graphics (TOG), vol. 28, no. 5, p. 141, 2009.
    [20] A. S. Kaplanyan and C. Dachsbacher, “Adaptive progressive photon mapping,”ACM Transactions on Graphics (TOG), vol. 32, no. 2, pp. 1–13, 2013.
    [21] R. Ramamoorthi and P. Hanrahan, “An efficient representation for irradianceenvironment maps,” in Proceedings of the 28th annual conference on Computergraphics and interactive techniques, pp. 497–500, 2001.
    [22] S. Agarwal, R. Ramamoorthi, S. Belongie, and H. W. Jensen, “Structuredimportance sampling of environment maps,” ACM Transactions on Graphics(TOG), vol. 22, pp. 605–612, 2003.
    [23] P. Clarberg, W. Jarosz, T. Akenine-M¨oller, and H. W. Jensen, “Wavelet importance sampling: Efficiently evaluating products of complex functions,” ACMTransactions on Graphics (TOG), vol. 24, pp. 1166–1175, 2005.
    [24] R. Ng, R. Ramamoorthi, and P. Hanrahan, “All-frequency shadows using nonlinear wavelet lighting approximation,” ACM Transactions on Graphics (TOG),vol. 22, pp. 376–381, 2003.
    [25] R. Ng, R. Ramamoorthi, and P. Hanrahan, “Triple product wavelet integralsfor all-frequency relighting,” ACM Transactions on Graphics (TOG), vol. 23,pp. 477–487, 2004.63
    [26] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for realtime rendering in dynamic, low-frequency lighting environments,” ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 527–536, 2002.
    [27] J. L¨ow, A. Ynnerman, P. Larsson, and J. Unger, “Hdr light probe sequenceresampling for realtime incident light field rendering,” in Proceedings of the2009 Spring Conference on Computer Graphics, pp. 43–50, 2009.
    [28] A. Silvennoinen and J. Lehtinen, “Real-time global illumination by precomputed local reconstruction from sparse radiance probes,” ACM Transactionson Graphics (TOG), vol. 36, no. 6, p. 230, 2017.
    [29] M. McGuire, M. Mara, D. Nowrouzezahrai, and D. Luebke, “Real-time globalillumination using precomputed light field probes,” in Proceedings of the 21stACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, p. 2,2017.
    [30] M. Abrash, “Quake’s lighting model: Surface caching.” https://www.bluesnews.com. [Online; accessed 20-April-2018].
    [31] C. Schoeneman, J. Dorsey, B. Smits, J. Arvo, and D. Greenberg, “Paintingwith light,” in ACM SIGGRAPH 2002 Conference Abstracts and Applications,pp. 226–226, 1993.
    [32] W.-C. Lin, T.-S. Huang, T.-C. Ho, Y.-T. Chen, and J.-H. Chuang, “Interactivelighting design with hierarchical light representation,” in Proceedings of theEurographics Symposium on Rendering, pp. 133–142, 2013.
    [33] H. Einhorn, “A new method for the assessment of discomfort glare,” LightingResearch & Technology, vol. 1, no. 4, pp. 235–247, 1969.64
    [34] R. G. Hopkinson, “Glare from daylighting in buildings,” Applied Ergonomics,vol. 3, no. 4, pp. 206–215, 1972.
    [35] J. Wienold and J. Christoffersen, “Evaluation methods and development ofa new glare prediction model for daylight environments with the use of ccdcameras,” Energy and Buildings, vol. 38, no. 7, pp. 743–757, 2006.
    [36] M. Konstantoglou and A. Tsangrassoulis, “Dynamic operation of daylightingand shading systems: A literature review,” Renewable and Sustainable EnergyReviews, vol. 60, pp. 268–283, 2016.
    [37] Y.-S. Chiou and P.-C. Huang, “The ever changing sky-bim model in daylightingstudy,” in 2014 ASHRAE/IBPSA-USA Building Simulation Conference, 2014.
    [38] Y.-S. Chiou and P.-C. Huang, “An hdri-based data acquisition system for theexterior luminous environment in the daylight simulation model,” Solar Energy,vol. 111, pp. 104–117, 2015.
    [39] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” inProceedings of the 27th annual conference on Computer graphics and interactivetechniques, pp. 417–424, 2000.
    [40] M. Blanco-Muriel, D. C. Alarc´on-Padilla, T. L´opez-Moratalla, and M. LaraCoira, “Computing the solar vector,” Solar Energy, vol. 70, no. 5, pp. 431 –441, 2001.
    [41] S. Willems, “Opengl hardware database.” https://opengl.gpuinfo.org/,2011. [Online; accessed 22-April-2018].
    [42] K. Rangi and W. Osterhaus, “Windowless environments: are they affecting ourhealth,” Proceedings of LIGHTING, pp. 18–19, 1999.65
    [43] “國家照度標準室內工作場所照明.” http://alit.org.tw/, 2011. [Online;accessed 28-April-2018].
    [44] H. B¨ulow-H¨ube, “Solar shading and daylight redirection,” Energy and BuildingDesign, 2007.
    [45] G. Ward and R. Shakespeare, “Rendering with radiance,” Waltham: MorganKaufmann Publishers, 1998.
    [46] S. Le Digabel, “Nomad: Nonlinear optimization with the mads algorithm,”ACM Transactions on Mathematical Software, vol. 37, p. 44, 2011.
    [47] C. Audet and J. E. Dennis Jr, “Mesh adaptive direct search algorithms for constrained optimization,” SIAM Journal on optimization, vol. 17, no. 1, pp. 188–217, 2006.
    [48] Blender Foundation, “Blender (software).” https://www.blender.org/, 1998.[Online; accessed 1-May-2018].
    [49] argonius, “Blend swap - anime classroom.” https://www.blendswap.com/blends/view/87816, 2017. [Online; accessed 1-May-2018].
    [50] M. McGuire, “Computer graphics archive.” http://casual-effects.com/data/, 2017. [Online; accessed 1-May-2018].
    [51] P. Hedman, T. Karras, and J. Lehtinen, “Sequential monte carlo instant radiosity,” in Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive3D Graphics and Games, pp. 121–128, 2016.
    [52] E. Shen, J. Hu, and M. Patel, “Energy and visual comfort analysis of lightingand daylight control strategies,” Building and Environment, vol. 78, pp. 155–170, 2014.66
    [53] Y.-S. Chiou and T. Q. Mai, “A portable system for on-site measurement ofindoor luminous properties for high-fidelity lighting simulation,” in Proceedings of BS 2013: 13th Conference of the International Building PerformanceSimulation Association, 2013.
    [54] J. Suk and M. Schiler, “Investigation of evalglare software, daylight glare probability and high dynamic range imaging for daylight glare analysis,” LightingResearch & Technology, vol. 45, no. 4, pp. 450–463, 2013.
    [55] Y.-T. Tsai and Z.-C. Shih, “All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation,” ACMTransactions on Graphics (TOG), vol. 25, pp. 967–976, 2006.
    [56] P.-P. Sloan, B. Luna, and J. Snyder, “Local, deformable precomputed radiancetransfer,” ACM Transactions on Graphics (TOG), vol. 24, pp. 1216–1224, 2005.
    [57] R. Green, “Spherical harmonic lighting: The gritty details,” in Archives of theGame Developers Conference, vol. 56, p. 4, 2003.
    [58] M. Pharr, W. Jakob, and G. Humphreys, Physically based rendering: Fromtheory to implementation. Morgan Kaufmann; second edition, 2010.
    [59] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org,2010. [Online; accessed 20-April-2018].
    [60] O. Arikan, D. A. Forsyth, and J. F. O’Brien, “Fast and detailed approximateglobal illumination by irradiance decomposition,” ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 1108–1114, 2005.67

    無法下載圖示 全文公開日期 2023/07/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE