簡易檢索 / 詳目顯示

研究生: Oka Pradipta Arjasa
Oka - Pradipta Arjasa
論文名稱: Smart Core-Shell Microgel for Dehumidifying Membrane: Synthesis, Characterization and Performance
Smart Core-Shell Microgel for Dehumidifying Membrane: Synthesis, Characterization and Performance
指導教授: 林析右
Shi-Yow Lin
陳崇賢
Chorng-Shyan Chern
口試委員: 洪儒生
Lu-Sheng Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 67
外文關鍵詞: smart material, microgel, N-isopropylacrylamide, dehumidifying membrane, water uptake, fast regeneration.
相關次數: 點閱:141下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • High relative humidity of indoor air will tend to increase the risk of health problems. The indoor humidity level can be controlled by using dehumidifying devices. Incorporating nano particle and smart materials into the dehumidifying devices can improve the efficiency and the performance of the devices. The properties of microgels which enable them to undergo such changes under a controlled condition put them into the category of smart materials. Smart materials basically are materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as stress, temperature, moisture, pH, electric or magnetic fields.
    In this study two different core-shell microgels were synthesized and characterized. The performance being a dehumidifying membrane was tested. The parameters affecting the core-shell synthesis were studied and optimized. The crosslinked microgel of poly(N-isopropylacrylamide co methylacrylic acid) (P(NIPAM-co-MAA) was used as shell. Two different cores, P(MMA-co-2-EHA) and silica nanopartices (SNs) were used.
    The synthesis condition for relatively high solids content core-shell microgel suspension of about 15 wt% solids content was optimized. The SNs in this study was synthesized using diethylenetriamine (DETA) as the weak base and resulted in good stability during the synthesis process in aqueous phase. The method used was able to get as high as 10 wt% of solid content of around 100-150 nm SNs with relatively narrow particle size distribution. The SNs produced was then used as the second core.
    High crosslink density of polymer core-shell microgels (5 wt% BIS) and SNs inverted core-shell microgel (3 wt% BIS) as dehumidifying membranes have better performance compare to other materials found during the literature search. Relatively high absorption rate, good water uptake and fast regeneration was observed.

    Abstract ...........................................................i List of Figures ..........................................................iv List of Tables .........................................................vii I. Introduction ...................................................1 I.1. How Indoor Humidity Affecting Human’s Life ...................1 I.2. Smart Material of Microgel/Nanogel ...........................2 I.3. Aims of the Investigation ...................................3 II. Literature Survey ...........................................5 II.1. Colloid ...........................................................5 II.2. Emulsion and Polymerization ...................................7 II.2.1. Surfactant ...................................................8 II.2.2. Emulsion Polymerization ..........................................11 II.2.3. Miniemulsion Poymerization ..................................12 II.2.4. Microemulsion Polymerization ..................................13 II.3. Seeded dispersion Polymerization ..........................13 II.3.1. Fundamental Knowledge ..........................................13 II.3.2. Hybrid Inorganic/Organic Core-Shell ..........................15 II.4. Microgel Suspension ..........................................17 III. Experimental Techniques ..........................................20 III.1. Seed Latex Synthesis ..........................................20 III.1.1. Materials ..........................................20 III.1.2. Synthesis Procedures ..................................20 III.2. The Core-Shell Particles Synthesis ..........................21 III.2.1. Materials ..........................................21 III.2.2. Synthesis procedures ..................................21 III.2.3. Experimental set up ..................................22 III.3. The Silica Nanoparticles Synthesis and Surface Modification ..23 III.3.1. Materials ..........................................23 III.3.2. Synthesis Procedures ..................................23 III.3.3. Experimental set up ..................................25 III.4. Membrane Dehumidifying Performance ..........................26 III.4.1. Materials ..........................................26 III.4.2. Experiments procedures ..................................26 III.4.3. Dehumidification chamber ..........................28 III.5. Instruments ..................................................28 IV. Result and Discussion ..........................................29 IV.1. High Solids Content Colloidal Thermoresponsive Core-Shell Particles ..................................................29 IV.1.1. The seed particles synthesis ..................................29 IV.1.2. The core-shell synthesis: the effect of different cross-linker concentration.....................................................30 IV.1.3. The core-shell synthesis: the effect of different surfactant concentration ..................................................34 IV.1.4. The core-shell synthesis: the effect of different monomer to seed ratio ..........................................................36 IV.2. High Solid Content Silica Nanoparticles in Aqueous Phase ..38 IV.2.1. The Effect of Cosolvent ........................................39 IV.2.2. The Effect of DETA Concentration ..........................41 IV.2.3. The Synthesis of High Solid Content SNs: The Effect of TEOS Concentration ..................................................43 IV.2.4. The Core-Shell Microgel Synthesis Using SNs as the Seed ..........46 IV.3. The Core-Shell Microgels Behavior (Swelling/Deswelling; Phase Transition) and Their Performance as Dehumidifying Membrane ..47 IV.3.1. The Swelling/Deswelling Behaviour ..........................48 IV.3.2. The LCST Behaviour ..........................................55 IV.3.3. The Core-Shell Microgel Performance as Dehumidifying Membrane ..55 V. Conclusion ..................................................60 VI. References ..................................................61

    1. (a) Arundel, A. V.; Sterling, E. M.; Biggin, J. H.; Sterling, T. D.,
    Indirect health effects of Relative Humidity in indoor environments.
    Environmental Health Perspective 1986, 65, 351-361; (b) Baughman, A.
    V.; Arens, E. A., Indoor humidity and human health-part 1: literature
    review of health effects of humidity-influenced indoor pollutants.
    ASRAE Transaction 1996, 102, 193-211.
    2. Sanson, N.; Rieger, J., Synthesis of nanogels/microgels by conventional
    and controlled radical crosslinking copolymerization. Polymer Chemistry
    2010, 1 (7), 965-977.
    3. (a) Tan, B. H.; Ravi, P.; Tan, L. N.; Tam, K. C., Synthesis and aqueous
    solution properties of sterically stabilized pH-responsive polyampholyte
    microgels. Journal of Colloid and Interface Science 2007, 309 (2), 453-
    463; (b) Dupin, D.; Rosselgong, J.; Armes, S. P.; Routh, A. F., Swelling
    Kinetics for a pH-Induced Latex-to-Microgel Transition. Langmuir 2007,
    23 (7), 4035-4041.
    4. Robinson, D. N.; Peppas, N. A., Preparation and Characterization of pH-
    Responsive Poly(methacrylic acid-g-ethylene glycol) Nanospheres.
    Macromolecules 2002, 35 (9), 3668-3674.
    5. Panayiotou, M.; Pohner, C.; Vandevyver, C.; Wandrey, C.; Hilbrig, F.;
    Freitag, R., Synthesis and characterisation of thermo-responsive
    poly(N,N′-diethylacrylamide) microgels. Reactive and Functional Polymers
    2007, 67 (9), 807-819.
    6. Wang, Q.; Xu, H.; Yang, X.; Yang, Y., Drug release behavior from in situ
    gelatinized thermosensitive nanogel aqueous dispersions. International
    Journal of Pharmaceutics 2008, 361 (1–2), 189-193.
    7. Park, Y.-H.; Han, J.-H.; Suh, K.-D., Preparation of pH-Responsive
    Hydrophilic Core-Shell Particles for Encapsulation of Water-Soluble
    Material. Macromolecular Chemistry and Physics 2008, 209 (9), 938-943.
    8. (a) Snowden, M. J.; Vincent, B., The temperature-controlled flocculation
    of crosslinked latex particles. Journal of the Chemical Society,
    Chemical Communications 1992, (16), 1103-1105; (b) Hall, R. J.;
    Pinkrah, V. T.; Chowdhry, B. Z.; Snowden, M. J., Heteroaggregation
    studies of mixed cationic co-polymer/anionic homopolymer microgel
    dispersions. Colloids and Surfaces A: Physicochemical and Engineering
    Aspects 2004, 233 (1–3), 25-38; (c) Rasmusson, M.; Vincent, B.,
    Flocculation of microgel particles. Reactive and Functional Polymers
    2004, 58 (3), 203-211.
    9. Kabanov, V. A.; Topchiev, D. A.; Karaputadze, T. M., Some features of
    radical polymerization of acrylic and methacrylic acid salts in aqueous
    solutions. Journal of Polymer Science: Polymer Symposia 1973, 42 (1),
    173-183.
    10. Goodwin, J., Colloids and interfaces with surfactants and polymers. 2
    ed.; John Wiley & Sons Ltd: west Sussex, United Kingdom, 2009.
    11. (a) Shaw, D. J., Introduction to colloid and surface chemistry. 4 ed.;
    Butterworth Heinemann: Burlington, England, 2003; (b) Myers, D.,
    Surfaces, interfaces and colloids: principles and applications. 2 ed.;
    John Wiley & Sons, Inc.: New York, 1999.
    12. Chern, C. S., Principles and application of emulsion polymerization.
    John Wiley & Sons, Inc.: New Jersey, 2008.
    13. Tadros, T. F., Applied surfactants principles and applications. Wiley
    VCH Verlag GmbH & Co. KGaA: Weinhein, Germany, 2005.
    14. (a) Griffin, W. C., Classification of Surface-Active Agents by HLB.
    Journal of the Society of Cosmetic Chemists 1949, 1, 311; (b) Griffin,
    W. C., Calculation of HLB Values of Non-Ionic Surfactants. Journal of
    the Society of Cosmetic Chemists 1954, 5, 259.
    15. (a) Cheong, I.; Kim, J., Effects of surface charge density on emulsion
    kinetics and secondary particle formation in emulsifier-free seeded
    emulsion polymerization of methyl methacrylate. Colloid & Polymer
    Science 1997, 275 (8), 736-743; (b) Butucea, V.; Sarbu, A.; Georgescu,
    C., Seeded emulsion polymerization of vinyl chloride. A new approach to
    mechanism and kinetics. Die Angewandte Makromolekulare Chemie 1998, 255
    (1), 37-44; (c) Vorwerg, L.; Gilbert, R. G., Electrosteric Stabilization
    with Poly(Acrylic) Acid in Emulsion Polymerization:  Effect on Kinetics
    and Secondary Particle Formation. Macromolecules 2000, 33 (18), 6693-
    6703.
    16. Colombie, D.; Sudol, E. D.; El-Aasser, M. S., Effect of a Mixed Anionic
    −Nonionic System of Surfactants on the Entry and Exit of Free Radicals
    into Polystyrene Particles. Macromolecules 2000, 33 (12), 4347-4353.
    17. Lopez de Arbina, L.; Gugliotta, L. M.; Barandiaran, M. J.; Asua, J.,
    Effect of oxygen on emulsion polymerisation kinetics: a study by
    reaction calorimetry. Polymer 1998, 39 (17), 4047-4055.
    18. Stober, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica
    spheres in the micron size range. Journal of Colloid and Interface
    Science 1968, 26 (1), 62-69.
    19. Kang, S.; Hong, S. I.; Choe, C. R.; Park, M.; Rim, S.; Kim, J.,
    Preparation and characterization of epoxy composites filled with
    functionalized nanosilica particles obtained via sol–gel process.
    Polymer 2001, 42 (3), 879-887.
    20. Bergna, H. E.; Roberts, W. O., Colloidal Silica Fundamentals and
    Applications. Taylor & Francis Group, LLC: New York, 2006.
    21. Nguyen, D.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E., About the
    suitability of the seeded-dispersion polymerization technique for
    preparing micron-sized silica-polystyrene clusters. Journal of Materials
    Chemistry 2010, 20 (42), 9392-9400.
    22. Heskins, M.; Guillet, J. E., Solution Properties of Poly(N-
    isopropylacrylamide). Journal of Macromolecular Science: Part A -
    Chemistry 1968, 2 (8), 1441-1455.
    23. Pelton, R.; Hoare, T., Microgels and Their Synthesis: An Introduction.
    In Microgel Suspensions, Wiley-VCH Verlag GmbH & Co. KGaA: 2011; pp 1-
    32.
    24. Hoffmann, M.; Siebenburger, M.; Harnau, L.; Hund, M.; Hanske, C.; Lu,
    Y.; Wagner, C. S.; Drechsler, M.; Ballauff, M., Thermoresponsive
    colloidal molecules. Soft Matter 2010, 6 (6), 1125-1128.
    25. Wu, X.; Pelton, R. H.; Hamielec, A. E.; Woods, D. R.; McPhee, W., The
    kinetics of poly(N-isopropylacrylamide) microgel latex formation.
    Colloid & Polymer Science 1994, 272 (4), 467-477.
    26. Hoare, T.; Pelton, R., Characterizing charge and crosslinker
    distributions in polyelectrolyte microgels. Current Opinion in Colloid
    & Interface Science 2008, 13 (6), 413-428.
    27. Kratz, K.; Hellweg, T.; Eimer, W., Structural changes in PNIPAM microgel
    particles as seen by SANS, DLS, and EM techniques. Polymer 2001, 42
    (15), 6631-6639.
    28. Pelton, R., Temperature-sensitive aqueous microgels. Advances in Colloid
    and Interface Science 2000, 85 (1), 1-33.
    29. Heyes, D. M.; Branka, A. C., Interactions between microgel particles.
    Soft Matter 2009, 5 (14), 2681-2685.
    30. Varga, I.; Gilanyi, T.; Meszaros, R.; Filipcsei, G.; Zrinyi, M., Effect
    of Cross-Link Density on the Internal Structure of Poly(N-
    isopropylacrylamide) Microgels. The Journal of Physical Chemistry B
    2001, 105 (38), 9071-9076.
    31. Duracher, D.; Elaissari, A.; Pichot, C., Effect of a cross-linking agent
    on the synthesis and colloidal properties of poly(N-
    isopropylmethacrylamide) microgel latexes. Macromolecular Symposia 2000,
    150, 305-311.
    32. Wu, C.; Zhou, S., Effects of surfactants on the phase transition of
    poly(N-isopropylacrylamide) in water. Journal of Polymer Science Part B:
    Polymer Physics 1996, 34 (9), 1597-1604.
    33. Meng, Z.; Cho, J. K.; Debord, S.; Breedveld, V.; Lyon, L. A.,
    Crystallization Behavior of Soft, Attractive Microgels. The Journal of
    Physical Chemistry B 2007, 111 (25), 6992-6997.
    34. Okubo, M., Advances in polymer science. Springer: Verlag Berlin
    Heidelberg, 2005; Vol. Polymer particles.
    35. (a) Tam, K. C.; Ragaram, S.; Pelton, R. H., Interaction of Surfactants
    with Poly(N-isopropylacrylamide) Microgel Latexes. Langmuir 1994, 10
    (2), 418-422; (b) Andersson, M.; Maunu, S. L., Structural studies of
    poly(N-isopropylacrylamide) microgels: Effect of SDS surfactant
    concentration in the microgel synthesis. Journal of Polymer Science,
    Part B: Polymer Physics 2006, 44 (23), 3305-3314.
    36. Derjaguin, B. V.; Landau, L., Theory of the Stability of Strongly
    Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles
    in Solutions of Electrolytes. Acta Phys. Chim. URSS 1941, 14, 633-662.
    37. (a) Harten, K. D.; Athanasopoulos, A. P. T.; Kitaev, V., Facile
    Preparation of Highly Monodisperse Small Silica Spheres (15 to >200 nm)
    Suitable for Colloidal Templating and Formation of Ordered Arrays.
    Langmuir 2008, 24, 1714-1720; (b) Yokoi, T.; Wakabayashi, J.; Otsuka,
    Y.; Fan, W.; Iwama, M.; Watanabe, R.; Aramaki, K.; Shimojima, A.;
    Tatsumi, T.; Okubo, T., Mechanism of Formation of Uniform-Sized Silica
    Nanospheres Catalyzed by Basic Amino Acids. Chemistry of Materials 2009,
    21, 3719-3729.
    38. Inoue, H.; Katayama, K.; Iwai, K.; Miura, A.; Masuhara, H.,
    Conformational relaxation dynamics of a poly(N-isopropylacrylamide)
    aqueous solution measured using the laser temperature jump transient
    grating method. Physical Chemistry Chemical Physics 2012, 14 (16), 5620-
    5627.
    39. Karg, M.; Wellert, S.; Prevost, S.; Schweins, R.; Dewhurst, C.; Liz-
    Marzan, L. M.; Hellweg, T., Well defined hybrid PNIPAM core-shell
    microgels: Size variation of the silica nanoparticle core. Colloid and
    Polymer Science 2011, 289 (5-6), 699-709.
    40. Claudia, S.; Pedro, A., Synthesis of Polymer Particles with Core-Shell
    Morphologies. In Advanced Polymer Nanoparticles, CRC Press: 2010; pp 29-
    59.
    41. (a) Schild, H. G., Poly(N-isopropylacrylamide): experiment, theory and
    application. Progress in Polymer Science 1992, 17 (2), 163-249; (b)
    Karg, M.; Hellweg, T., Smart inorganic/organic hybrid microgels:
    Synthesis and characterisation. Journal of Materials Chemistry 2009, 19
    (46), 8714-8727.
    42. Lue, S. J.; Chen, C.-H.; Shih, C.-M., Tuning of Lower Critical Solution
    Temperature (LCST) of Poly(N-Isopropylacrylamide-co-Acrylic acid)
    Hydrogels. Journal of Macromolecular Science, Part B: Physics 2011, 50
    (3), 563 - 579.
    43. Chua, H. T.; Ng, K. C.; Chakraborty, A.; Oo, N. M.; Othman, M. A.,
    Adsorption Characteristics of Silica Gel + Water Systems. Journal of
    Chemical & Engineering Data 2002, 47 (5), 1177-1181.
    44. Wang, K.-S.; Liao, C.-C.; Chu, R. Q.; Chung, T.-W., Equilibrium
    Isotherms of Water and Ethanol Vapors on Starch Sorbents and Zeolite 3A.
    Journal of Chemical & Engineering Data 2010, 55 (9), 3334-3337.

    QR CODE