簡易檢索 / 詳目顯示

研究生: 臧家良
Jia-liang Zang
論文名稱: 藉由點擊化學固定PEG於多巴胺修飾的高分子薄膜表面
PEGylation of polymeric membrane surface via dopamine modification and click chemistry
指導教授: 李振綱
Cheng-kang Lee
口試委員: 王孟菊
Meng-jiy Wang
陳崇賢
Chorng-shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 82
中文關鍵詞: 多巴胺聚乙二醇點擊化學抗蛋白質和細胞吸附表面
外文關鍵詞: Dopamine, Poly ethylene glycol, Click chemistry, Antifouling Surface
相關次數: 點閱:228下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究在高分子薄膜上修飾聚乙二醇(poly-ethylene glycol)的簡易方法,以降低蛋白質和細胞在薄膜表面上的吸附。首先藉由多巴胺(dopamine)的自我氧化聚合,而於薄膜表面形成聚多巴胺,此聚多巴胺極易與具有一級胺的分子形成共價結合,因此丙炔胺(propargylamine)能鍵結在聚多巴胺修飾的薄膜上,使得其結構中的炔基暴露在薄膜表面。經由點擊化學(click chemistry)的作用能輕易準確地將含有N3之mPEG接附在薄膜表面。接附在薄膜表面的PEG可由X-ray photoelectron spectroscopy(XPS)確認;其表面型態可用Atomic force microscope(AFM)觀察。表面PEG化之薄膜具有對BSA蛋白質和纖維母細胞(fibroblast)的抗沉積能力;經由Nessler試劑可計算出約有8.0e-02μmole的PEG可被固定於1cm2薄膜表面。


In this study, a facile method was developed to modify the surfaces of polymeric membranes with polyethylene glycol (PEG) to reduce the fouling of proteins and cells. Dopamine was first self-polymerized on membrane surface by oxidation via air exposure. Since the adherent polydopamine is strongly prone to couple with primary amine containing molecules, propargylamine was then coupled to the dopamine treated membrane surface. With alkyane groups exposed, the synthesized PEG-azide was easily grafted to the membrane surface via “click chemistry”. The existence of PEG on the membrane surface was confirmed by X-ray photoelectron spectroscopy; The surface morphology was studied by atomic force microscope. The antifouling capability of the PEGylated membrane was evaluated by incubating with bovine serum albumin solution (BSA) and growing fibroblast on top of it. 8.0e-02μmole PEG can be immobilized on 1cm2 membrane surface via evaluation of Nessler’s reagent.

目錄 中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究目的 1 1.2 研究內容簡介 2 第二章 文獻回顧 3 2.1 生物反應器之簡介 3 2.2 多巴胺之特性 5 2.3 聚乙二醇之特性 7 2.4 聚乙二醇表面修飾應用 9 2.5 聚乙二醇表面修飾方法 10 2.6 點擊化學 11 2.7 蛋白質和材料表面之交互作用 12 2.7.1 蛋白質於材料表面吸附過程 13 2.7.2 疏水作用力對蛋白質吸附的影響 14 2.7.3 靜電作用力對蛋白質吸附的影響 15 2.7.4 蛋白質吸附至材料表面後的情況 16 2.8 細胞對材料表面之交互作用 16 2.8.1 材料表面特性對細胞行為的影響 17 2.8.2 材料表面蛋白質對細胞行為的影響 18 第三章 實驗方法 19 3.1 實驗流程 19 3.2 實驗材料 21 3.3 實驗設備 23 3.4 實驗步驟 24 3.4.1 聚乙二醇甲基醚(mPEG)的改質[84] 24 3.4.2 多巴胺的修飾 26 3.4.3 丙炔胺接附於聚多巴胺表面 27 3.4.4 聚乙二醇的接枝 27 3.4.5 蛋白質的吸附 28 3.4.6 細胞在PEG修飾後PVDF膜上的貼附 30 3.5 分析方法 31 3.5.1 FTIR-Mid-IR 官能基分析 31 3.5.2 接觸角測試 32 3.5.3 反應溶液中丙炔胺含量測試 33 3.5.4 表面接枝密度測定[86] 35 3.5.5 Bradford分析方法 36 3.5.6 LDH分析方法 37 第四章 結果與討論 39 4.1 聚乙二醇及其衍生物之分析 39 4.1.1 FTIR 39 4.2 反應溶液中炔基、胺基及聚乙二醇的濃度變化 42 4.2.1 反應溶液中炔基濃度的變化 42 4.2.2 反應溶液中胺基濃度的變化 43 4.2.3 反應溶液中聚乙二醇的濃度變化 44 4.3 材料表面分析 48 4.3.1 材料表面親疏水性變化 49 4.3.2 材料表面結構變化 50 4.3.3 材料表面組成變化 56 4.4 材料表面特性對蛋白質行為的影響 61 4.4.1 材料表面特性對蛋白質吸附的影響 62 4.4.2 蛋白質吸附於不同材料表面後的脫附 65 4.5 細胞貼附 66 第五章 結論 70 參考文獻 71 圖目錄 圖 1.1生物反應器過濾示意圖 1 圖 2.1 不同生物反應器操作方式與細胞培養能力之比較…………. .4 圖 2.2 灌注式生物反應器(perfusion bioreactors)之示意圖 5 圖 2.3 多巴胺分子式 6 圖 2.4 多巴胺自我聚合示意圖 6 圖 2.5 聚乙二醇修飾於材料表面之示意圖 8 圖 2.6 點擊化學之示意圖 12 圖 2.7 蛋白質吸附於材料表面示意圖 14 圖 3.1 實驗流程圖 20 圖 3.2 薄膜表面PEG修飾之示意圖 21 圖 3.3 mPEG-Cl之合成 25 圖 3.4 mPEG-N3之改質 26 圖 3.5細胞計數器示意圖 31 圖 3.6 接觸角測量模型 33 圖 3.7 茚三酮與一級胺分子呈色反應機制 34 圖 3.8 銀與末端炔生成沉澱物之反應式 35 圖 4.1 mPEG與mPEG-Cl之比較 40 圖 4.2 mPEG-N3與mPEG-NH2之FTIR圖譜 41 圖 4.3 聚乙二醇及其衍生物與茚三酮呈色反應 41 圖 4.4反應溶液中丙炔胺濃度變化 42 圖 4.5 Ninhydrin測試的標準檢量線 43 圖 4.6反應溶液中丙炔胺濃度隨時間變化 44 圖 4.7 mPEG-NH2和Nessler染劑反應之標準檢量線 45 圖 4.8 mPEG-N3和Nessler染劑反應之標準檢量線 47 圖 4.9 不同鍵結方式接枝於聚多巴胺表面之示意圖 48 圖 4.10 PVDF表面與多巴胺溶液反應時間對接觸角之影響 49 圖 4.11 Dopamine反應溶液pH值對PVDF改質接觸角之影響 50 圖 4.12 表面結構改變的情況 52 圖 4.13表面粗糙度的分析 53 圖 4.14 表面型態3D圖 55 圖 4.15 XPS全能譜圖 57 圖 4.16 各成長階段的C1s特徵能譜圖 59 圖 4.17 10-80μg/mL牛血清蛋白標準檢量線 63 圖 4.18 0.05-0.5mg/mL牛血清蛋白標準檢量線 63 圖 4.19 不同材料表面對蛋白質吸附的影響 65 圖 4.20蛋白質吸附於不同表面之示意圖 65 圖 4.21蛋白質吸附於不同材料的脫附 66 圖 4.22 已知細胞數目與LDH試劑反應之標準檢量線 67 圖 4.23不同材料表面對細胞貼附行為的影響 69 圖 4.24細胞吸附於不同表面之示意圖 69 表目錄 表 4.1 mPEG-NH2與聚多巴胺表面反應消耗之莫耳數 46 表 4.2 mPEG-N3與聚多巴胺表面反應消耗之莫耳數 48 表 4.3 表面元素分析 61

1.Ryo Ohashi, V.S., and Jean-Francois P. Hamel. European Society for Animal Cell Technology. European Society for Animal Cell Technology 2001.
2.江忠鍵;刑玉璽, 生物反應器設備之介紹. 智慧機械技術專輯, 2006. 277: p. 108-115.
3.宋麟祥, 生物反應器應用於組織工程的進展與前景趨勢, in 化工資訊與商情第24期. 2005.
4.Pathi, P., T. Ma, and B.R. Locke, Role of nutrient supply on cell growth in bioreactor design for tissue engineering of hematopoietic cells. Biotechnology and Bioengineering, 2005. 89(7): p. 743-758.
5.Griffiths, B., Scale-up of suspension and anchorage-dependent animal cells. Applied Biochemistry and Biotechnology - Part B Molecular Biotechnology, 2001. 17(3): p. 225-238.
6.Ryu, D.Y., Shin, K. , Drockenmuller, E., Hawker, C. J., Russell, T. P., A generalized approach to the modification of solid surfaces. Science, 2005. 308(5719): p. 236-239.
7.Allen, K.W., Adhesion 6. 1982.
8.Lee, H., Dellatore, S. M., Miller, W. M., Messersmith, P. B., Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-430.
9.Sever, M.J., Weisser, J. T., Monahan, J., Srinivasan, S., Wilker, J. J., Metal-Mediated Cross-Linking in the Generation of a Marine-Mussel Adhesive. Angewandte Chemie - International Edition, 2004. 43(4): p. 448-450.
10.Lee, B.P., J.L. Dalsin, and P.B. Messersmith, Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules, 2002. 3(5): p. 1038-1047.
11.LaVoie, M.J., Ostaszewski, B. L., Weihofen, A., Schlossmacher, M. G., Selkoe, D. J., Dopamine covalently modifies and functionally inactivates parkin. Nature Medicine, 2005. 11(11): p. 1214-1221.
12.Xi, Z.Y., Xu, Y. Y., Zhu, L. P., Wang, Y., Zhu, B. K., A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). Journal of Membrane Science, 2009. 327(1-2): p. 244-253.
13.Xiao Linlin, W.Y., JI Jian, Surface Tailoring of PTFE for Endotheleal Cells Selectivity Based on Polydopamine-Assisted Self-Assembly Monolayer Technique. ACTA POLYMERICA SINICA, 2010. 4(4): p. 479-483.
14.Deming, T.J., Mussel byssus and biomolecular materials. Curr Opin Chem Biol, 1999. 3(1): p. 100-5.
15.Liao, Y., Cao, B., Wang, W. C., Zhang, L., Wu, D., Jin, R., Cao, B., A facile method for preparing highly conductive and reflective surface-silvered polyimide films. Applied Surface Science, 2009. 255(19): p. 8207-8212.
16.Liao, Y., Wang, Y., Feng, X., Wang, W., Xu, F., Zhang, L., Antibacterial surfaces through dopamine functionalization and silver nanoparticle immobilization. Materials Chemistry and Physics, 2010. 121(3): p. 534-540.
17.陳建誠, 經聚乙二醇雙性高分子修飾之胰凝乳蛋白脢的熱穩定性. 台灣科技大學碩士論文, 2009.
18.Zalipsky, S., Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjugate Chemistry, 1995. 6(2): p. 150-165.
19.Zalipsky, S., Chemistry of polyethylene glycol conjugates with biologically. Advanced Drug Delivery Reviews, 1995. 16(2-3): p. 157-182.
20.Abuchowski, A., J.R. McCoy, and N.C. Palczuk, Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. Journal of Biological Chemistry, 1977. 252(11): p. 3582-3586.
21.Harris, J.M., Introduction to biomedical and biotechnical applications of polyethylene glycol. American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, 1997. 38(1): p. 520-521.
22.Blume, G. and G. Cevc, Molecular mechanism of the lipid vesicle longevity in vivo. Biochimica et Biophysica Acta - Biomembranes, 1993. 1146(2): p. 157-168.
23.Chen, Y., Kang, E. T., Neoh, K. G., Wang, P., Tan, K. L., Surface modification of polyaniline film by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. Synthetic Metals, 2000. 110(1): p. 47-55.
24.Zhang, M., T. Desai, and M. Ferrari, Proteins and cells on PEG immobilized silicon surfaces. Biomaterials, 1998. 19(10): p. 953-960.
25.Kim, H.W., C.W. Chung, and Y.H. Rhee, UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly(3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion. International Journal of Biological Macromolecules, 2005. 35(1-2): p. 47-53.
26.Queiroz, J.A., F.A.P. Garcia, and J.M.S. Cabral, Hydrophobic interaction chromatography of Chromobacterium viscosum lipase on polyethylene glycol immobilized on Sepharose. Journal of Chromatography A, 1996. 734(1): p. 213-219.
27.Fee, C.J. and J.M. Van Alstine, PEG-proteins: Reaction engineering and separation issues. Chemical Engineering Science, 2006. 61(3): p. 934-939.
28.Nie, F.Q., Xu, Z. K., Ye, P., Wu, J., Seta, P. Acrylonitrile-based copolymer membranes containing reactive groups: Effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility. Polymer, 2004. 45(2): p. 399-407.
29.Fan, X., L. Lin, and P.B. Messersmith, Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: Effect of ethylene glycol side chain length. Biomacromolecules, 2006. 7(8): p. 2443-2448.
30.Abuchowski, A., Van Es, T., Palczuk, N. C., Davis, F. F., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry, 1977. 252(11): p. 3578-3581.
31.Roberts, M.J., M.D. Bentley, and J.M. Harris, Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 2002. 54(4): p. 459-476.
32.許朝翔, 利用恆溫滴定微卡計探討聚乙二醇蛋白質吸附之作用機制. 國立中央大學化學工程與材料工程研究所碩士論文, 2007.
33.Sharma, S., R.W. Johnson, and T.A. Desai, Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices. Langmuir, 2004. 20(2): p. 348-56.
34.Sharma, S., R.W. Johnson, and T.A. Desai, XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosens Bioelectron, 2004. 20(2): p. 227-39.
35.Beyer, D., Bohanon, T. M., Knoll, W., Ringsdorf, H., Elender, G., Sackmann, E., Surface modification via reactive polymer interlayers. Langmuir, 1996. 12(10): p. 2514-2518.
36.Prime, K.L. and G.M. Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. Journal of the American Chemical Society, 1993. 115(23): p. 10714-10721.
37.Morpurgo, M., Veronese, F. M., Kachensky, D., Harris, J. M., Preparation of characterization of poly(ethylene glycol) vinyl sulfone. Bioconjug Chem, 1996. 7(3): p. 363-8.
38.Li, J.T., Carlsson, J., Lin, J. N., Caldwell, K. D., Chemical modification of surface active poly(ethylene oxide)- poly(propylene oxide) triblock copolymers. Bioconjugate Chemistry, 1996. 7(5): p. 592-599.
39.Maechling-Strasser, C., Dejardin, P., Galin, J. C., Schmitt, A., Preadsorption of polymers on glass and silica to reduce fibrinogen adsorption. J Biomed Mater Res, 1989. 23(12): p. 1385-93.
40.Kamath, K.R., Danilich, M. J., Marchant, R. E., Park, K., Platelet interactions with plasma-polymerized ethylene oxide and N-vinyl-2-pyrrolidone films and linear poly(ethylene oxide) layer. Journal of Biomaterials Science, Polymer Edition, 1996. 7(11): p. 977-988.
41.Tseng, Y.C. and K. Park, Synthesis of photoreactive poly(ethylene glycol) and its application to the prevention of surface-induced platelet activation. J Biomed Mater Res, 1992. 26(3): p. 373-91.
42.Caro, A., Humblot, V., Methivier, C., Minier, M., Salmain, M., Pradier, C. M., Grafting of lysozyme and/or poly(ethylene glycol) to prevent biofilm growth on stainless steel surfaces. J Phys Chem B, 2009. 113(7): p. 2101-9.
43.Ito, Y., Hasuda, H., Sakuragi, M., Tsuzuki, S., Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Acta Biomater, 2007. 3(6): p. 1024-32.
44.Shi, F., Niu, J.,Liu, Z.,Wang, Z.,Smet, M.,Dehaen, W.,Qiu, Y.,
Zhang, X., To adjust wetting properties of organic surface by in situ photoreaction of aromatic azide. Langmuir, 2007. 23(3): p. 1253-7.
45.Popat, K.C., Mor, G.,Grimes, C. A., Desai, T. A. Surface modification of nanoporous alumina surfaces with poly(ethylene glycol). Langmuir, 2004. 20(19): p. 8035-41.
46.Chang, Y., Ko, C. Y., Shih, Y. J., Quémener, D., Deratani, A.Wei, T.C.,Wang, D. M.,Lai, J. Y., Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. Journal of Membrane Science, 2009. 345(1-2): p. 160-169.
47.Jin, Z., Feng, W., Zhu, S., Sheardown, H., Brash, J. L. Protein-resistant polyurethane via surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate. Journal of Biomedical Materials Research - Part A, 2009. 91(4): p. 1189-1201.
48.Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R.
, Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2007. 2(12): p. 751-60.
49.LaVan, D.A., D.M. Lynn, and R. Langer, Moving smaller in drug discovery and delivery. Nat Rev Drug Discov, 2002. 1(1): p. 77-84.
50.Fichter, K.M., Zhang, L., Kiick, K. L., Reineke, T. M., Peptide-functionalized poly(ethylene glycol) star polymers: DNA delivery vehicles with multivalent molecular architecture. Bioconjugate Chemistry, 2008. 19(1): p. 76-88.
51.Díaz, D.D., Punna, S., Holzer, P., McPherson, A. K., Sharpless, K. B.
, Fokin, V. V., Finn, M. G., Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. Journal of Polymer Science, Part A: Polymer Chemistry, 2004. 42(17): p. 4392-4403.
52.Bock, V.D., H. Hiemstra, and J.H. Van Maarseveen, Cu(I)-catalyzed alkyne-azide "click" cycloadditions from a mechanistic and synthetic perspective. European Journal of Organic Chemistry, 2006(1): p. 51-68.
53.Nandivada, H., X. Jiang, and J. Lahann, Click chemistry: Versatility and control in the hands of materials scientists. Advanced Materials, 2007. 19(17): p. 2197-2208.
54.Lutz, J.F., 1,3-Dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science. Angewandte Chemie - International Edition, 2007. 46(7): p. 1018-1025.
55.Binder, W.H. and R. Sachsenhofer, 'Click' chemistry in polymer and materials science. Macromolecular Rapid Communications, 2007. 28(1): p. 15-54.
56.Pahimanolis, N., Vesterinen, A. H., Rich, J., Seppala, J., Modification of dextran using click-chemistry approach in aqueous media. Carbohydrate Polymers, 2010.
57.Ossipov, D.A. and J. Hilborn, Poly(vinyl alcohol)-based hydrogels formed by "click chemistry". Macromolecules, 2006. 39(5): p. 1709-1718.
58.O'Reilly, R.K., et al., Preparation of orthogonally-functionalized core Click cross-linked nanoparticles. New Journal of Chemistry, 2007. 31(5): p. 718-724.
59.Helms, B., Mynar, J. L., Hawker, C. J., Fréchet, J. M. J., Dendronized linear polymers via "click chemistry". Journal of the American Chemical Society, 2004. 126(46): p. 15020-15021.
60.Li, H., Cheng, F., Duft, A. M., Adronov, A., Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling. Journal of the American Chemical Society, 2005. 127(41): p. 14518-14524.
61.Chen, G., Tao, L., Mantovani, G., Ladmiral, V., Burt, D. P., Mac Pherson, J. V., Haddleton, D. M., Synthesis of azide/alkyne-terminal polymers and application for surface functionalisation through a [2 + 3] Huisgen cycloaddition process, "click chemistry". Soft Matter, 2007. 3(6): p. 732-739.
62.Binder, W.H., Sachsenhofer, R., Straif, C. J., Zirbs, R., Surface-modified nanoparticles via thermal and Cu(i)-mediated "click" chemistry: Generation of luminescent CdSe nanoparticles with polar ligands guiding supramolecular recognition. Journal of Materials Chemistry, 2007. 17(20): p. 2125-2132.
63.Gierlich, J., Burley, G. A., Gramlich, P. M. E., Hammond, D. M., Carell, T., Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. Organic Letters, 2006. 8(17): p. 3639-3642.
64.Chang, K.P., Hao, S. P., Lin, S. Y., Ueng, S. H., Pai, P. C., Tseng, C. K., Hsueh, C., Hsieh, M. S., Yu, J. S., Tsang, N. M., The 30-bp deletion of Epstein-Barr virus latent membrane protein-1 gene has no effect in nasopharyngeal carcinoma. Laryngoscope, 2006. 116(4): p. 541-546.
65.Beatty, K.E., Xie, F., Wang, Q., Tirrell, D. A., Selective dye-labeling of newly synthesized proteins in bacterial cells. Journal of the American Chemical Society, 2005. 127(41): p. 14150-14151.
66.Williams, D.F., On the nature of biomaterials. Biomaterials, 2009. 30(30): p. 5897-5909.
67.Tamada, Y. and Y. Ikada, Fibroblast growth on polymer surfaces and biosynthesis of collagen. Journal of Biomedical Materials Research, 1994. 28(7): p. 783-789.
68.Gotoh, Y. and Y. Tamada, In vitro study of initial cell attachment to the surfaces coated with conjugates consisting of silk fibroin and chitooligosaccharides. Journal of Insect Biotechnology and Sericology, 2005. 74(2): p. 39-43.
69.Ikada, Y., Surface modification of polymers for medical applications. Biomaterials, 1994. 15(10): p. 725-736.
70.Andrade, J.D. and R. Van Wagenen. Protein adsorption at polymer surfaces. 1983.
71.蔡偉博, 蛋白質和細胞與生物材料的交互作用. 生醫材料專刊, 2001(48): p. 23-38.
72.孫嘉琪, 藉由氧電漿誘導接枝PEGMA進行聚矽氧表面改質以做為眼科材料之研究. 台灣科技大學碩士論文, 2010.
73.Dill, K.A., Dominant forces in protein folding. Biochemistry, 1990. 29(31): p. 7133-7155.
74.Makhatadze, G.I. and P.L. Privalov, Energetics of protein structure. Advances in Protein Chemistry, 1995. 47: p. 307-425.
75.Bruinsma, G.M., H.C. Van Der Mei, and H.J. Busscher, Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials, 2001. 22(24): p. 3217-3224.
76.Farruggia, B., García, G., D'Angelo, C., Picó, G., Destabilization of human serum albumin by polyethylene glycols studied by thermodynamical equilibrium and kinetic approaches. International Journal of Biological Macromolecules, 1997. 20(1): p. 43-51.
77.Wagner, M.S., T.A. Horbett, and D.G. Castner, Characterizing multicomponent adsorbed protein films using electron spectroscopy for chemical analysis, time-of-flight secondary ion mass spectrometry, and radiolabeling: Capabilities and limitations. Biomaterials, 2003. 24(11): p. 1897-1908.
78.Hannan, G.N. and B.R. McAuslan, Immobilized serotonin: A novel substrate for cell culture. Experimental Cell Research, 1987. 171(1): p. 153-163.
79.Ito, Y., Nogawa, M., Takeda, M., Shibuya, T., Photo-reactive polyvinylalcohol for photo-immobilized microarray. Biomaterials, 2005. 26(2): p. 211-216.
80.Horbett, T.A., Waldburger, J. J., Ratner, B. D., Hoffman, A. S., Cell adhesion to a series of hydrophilic-hydrophobic copolymers studied with a spinning disc apparatus. Journal of Biomedical Materials Research, 1988. 22(5): p. 383-404.
81.Van Wachem, P.B., Hogt, A. H., Beugeling, T., Feijen, J., Bantjes, A.
, Detmers, J. P., Van Aken, W. G., Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials, 1987. 8(5): p. 323-328.
82.Uyama, Y., K. Kato, and Y. Ikada. 1998. p. X-39
83.Horbett, T.A., M.B. Schway, and B.D. Ratner, Hydrophilic-hydrophobic copolymers as cell substrates: Effect on 3T3 cell growth rates. Journal of Colloid And Interface Science, 1985. 104(1): p. 28-39.
84.Zalipsky, S., C. Gilon, and A. Zilkha, Attachment of drugs to polyethylene glycols. European Polymer Journal, 1983. 19(12): p. 1177-1183.
85.Himo, F., Lovell, T., Hilgraf, R., Rostovtsev, V. V., Noodleman, L.
, Sharpless, K. B., Fokin, V. V., Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. Journal of the American Chemical Society, 2005. 127(1): p. 210-216.
86.Ingham, K.C. and R.C. Ling, A quantitative assay for poly(ethylene glycol) without interference by proteins. Analytical Biochemistry, 1978. 85(1): p. 139-145.
87.Herlinger, E., R.F. Jameson, and W. Linert, Spontaneous autoxidation of dopamine. Journal of the Chemical Society, Perkin Transactions 2, 1995(2): p. 259-263.
88.Lee, H., J. Rho, and P.B. Messersmith, Facile conjugation of biomolecu les onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials, 2009. 21(4): p. 431-434.
89.Liu, B.S. and T.B. Huang, Nanocomposites of genipin-crosslinked chitosan/silver nanoparticles - Structural reinforcement and antimicrobial properties. Macromolecular Bioscience, 2008. 8(10): p. 932-941.

無法下載圖示 全文公開日期 2015/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE