簡易檢索 / 詳目顯示

研究生: Frederik Elly Gosal
Frederik Elly Gosal
論文名稱: 種新穎的混合深度機器學習方法用於預測與時間相關的工程問題
A Novel Hybrid Deep Machine Learning for Predicting Time-related Engineering Problems
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 呂守陞
Sou-Sen Leu
曾惠斌
Hui-Ping Tserng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 92
外文關鍵詞: Time-related problem, Neural-Network
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Data-driven decision-making emerged as critical tool, in response to the significant growth in scale and complexity in construction engineering. Currently, the process is carrying out by utilizing deep learning technique such as Neural Network (NN) and Bidirectional Gated Recurrent Units (BiGRU). NN is great in processing complex features relationship in time-independent data, BiGRU shows great performance in processing data with temporal dependencies. To leverage the advantage of NN and BiGRU, this study proposed a novel hybrid deep machine learning by combining NN and BiGRU. Additionally, integrated Optical Microscope Algorithm, an optimization algorithm inspired by microscope mechanism, for fine-tuning the NN-BiGRU hybrid model (OMA-NN-BIGRU), increasing the model accuracy and generalizability. Through case studies implementation the OMA-NN-BiGRU shows great performance and able to outperform other base and hybrid model with the following regression metrics value for each case. In the case of estimating construction cost: RMSE = 0.121, MAE = 0.0095, MAPE = 7.63 %, R = 0.9948 and R2 = 0.9889, with a RI index of 0.97716. In the case of predicting estimate schedule to completion: RMSE = 0.057, MAE = 0.0453, MAPE = 11.97 %, R = 0.9696 and R2 = 0.8861 with a RI index of 0.92674. In the case of predicting TBM performance: RMSE = 0.0528, MAE = 0.0395, MAPE = 13.7 %, R = 0.9251 and R2 = 0.8515, with a RI index of 0.90946. An accurate prediction model empowers stakeholders in the construction engineering to make informed decisions, leading to project efficiency and success.

    ABSTRACT i ACKNOWLEDGEMENT ii TABLE OF CONTENTS iii ABBREVIATIONS AND SYMBOLS vii LIST OF FIGURES xi LIST OF TABLES xiii CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Research Objective 3 1.3 Research Scope and Assumption 3 1.4 Research Methodology 4 1.5 Research Outline 7 CHAPTER 2 LITERATURE REVIEW 8 2.1 Related Research 8 2.2 Neural Network (NN) 10 2.3 Recurrent Neural Network (RNN) 11 2.3.1 Gated Recurrent Units (GRU) 13 2.3.2 Bi-directional GRU 15 2.4 Optical Microscope Algorithm (OMA) 16 2.5 Activation Function 20 CHAPTER 3 MODEL CONSTRUCTION 24 3.1 OMA-NN-BiGRU Conceptual Mechanism 24 3.2 OMA-NN-BiGRU Model Framework 25 3.2.1 Step 1: Data Collecting 26 3.2.2 Step 2: Data Preprocessing 26 3.2.3 Step 3: Data reconstruction 28 3.2.4 Step 4: Data splitting 30 3.2.5 Step 5: Parameter initialization 30 3.2.6 Step 6: NN-BiGRU process 31 3.2.6.1 Input Layer 31 3.2.6.2 Hidden Layer(s) 32 3.2.6.3 Dense Layer (Fully-connected) 34 3.2.6.4 Concat Layer (Concatenation) 36 3.2.6.5 Output Layer 36 3.2.6.6 Activation Function 37 3.2.7 Step 7: Objective function 39 3.2.8 Step 8: OMA Searching 39 3.2.8.1 NN-BiGRU Model Architecture Optimization 40 3.2.8.2 NN-BiGRU Output Weight Optimization 41 3.2.8.3 OMA Parameter Setting 43 3.2.9 Step 9: Termination Criteria 44 3.2.10 Step 10: Optimized Inferenced Model 44 3.2.11 Step 11: Model Prediction 44 3.3 Performance Evaluation Metrics 44 CHAPTER 4 MODEL IMPLEMENTATION AND EVALUATION 48 4.1 Case 1: Residential Building Construction Cost 48 4.1.1 Input Variable 49 4.1.2 Model Parameter Setting 52 4.1.3 Optimal Parameter and Weight 52 4.1.4 Model Result and Comparison 54 4.2 Case 2: Estimate Schedule to Completion 55 4.2.1 Input Variable 57 4.2.2 Parameter Setting 59 4.2.3 Optimal Parameter and Weight 59 4.2.4 Model Result and Comparison 61 4.3 Case 3: Tunnel Boring Machine Performance 62 4.3.1 Input Variable 65 4.3.2 Parameter Setting 66 4.3.3 Optimal Parameter and Weight 67 4.3.4 Model Result and Comparison 69 CHAPTER 5 CONCLUSION AND RECOMMENDATION 70 5.1 Conclusion 70 5.2 Recommendation 71 REFERENCES 72

    Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Davila Delgado, J. M., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/https://doi.org/10.1016/j.jobe.2021.103299
    Amari, S. (1967). A theory of adaptive pattern classifiers. IEEE Transactions on Electronic Computers(3), 299-307.
    Berners-Lee, C. M. (1968). Cybernetics and Forecasting. Nature, 219(5150), 202-203. https://doi.org/10.1038/219202b0
    Chen, Z., Zhang, Y., Li, J., Li, X., & Jing, L. (2021). Diagnosing tunnel collapse sections based on TBM tunneling big data and deep learning: A case study on the Yinsong Project, China. Tunnelling and Underground Space Technology, 108, 103700. https://doi.org/https://doi.org/10.1016/j.tust.2020.103700
    Cheng, M.-Y., Chang, Y.-H., & Korir, D. (2019). Novel approach to estimating schedule to completion in construction projects using sequence and nonsequence learning. Journal of Construction Engineering and Management, 145(11), 04019072.
    Cheng, M.-Y., Khitam, A. F. K., & Tanto, H. H. (2023). Construction worker productivity evaluation using action recognition for foreign labor training and education: A case study of Taiwan. Automation in Construction, 150, 104809. https://doi.org/https://doi.org/10.1016/j.autcon.2023.104809
    Cheng, M.-Y., Wu, Y.-W., & Huang, C.-C. (2020). Hybrid Gaussian Process Inference Model for Construction Management Decision Making. International Journal of Information Technology & Decision Making, 19(04), 1015-1036. https://doi.org/10.1142/s0219622020500212
    Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.
    Dai, Z., Li, P., Zhu, M., Zhu, H., Liu, J., Zhai, Y., & Fan, J. (2023). Dynamic prediction for attitude and position of shield machine in tunneling: A hybrid deep learning method considering dual attention. Advanced Engineering Informatics, 57, 102032. https://doi.org/https://doi.org/10.1016/j.aei.2023.102032
    Fu, X., Wu, M., Tiong, R. L. K., & Zhang, L. (2023). Data-driven real-time advanced geological prediction in tunnel construction using a hybrid deep learning approach. Automation in Construction, 146, 104672. https://doi.org/https://doi.org/10.1016/j.autcon.2022.104672
    Gosal, F. E., & Tambunan, E. (2021). Effect of side frictions on level of service of DI Panjaitan street in Cawang - East Jakarta. IOP Conference Series: Earth and Environmental Science, 878(1), 012048. https://doi.org/10.1088/1755-1315/878/1/012048
    Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
    Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
    Jordan, M. I. (1997). Serial order: A parallel distributed processing approach. In Advances in psychology (Vol. 121, pp. 471-495). Elsevier.
    Mehmood, I., Li, H., Qarout, Y., Umer, W., Anwer, S., Wu, H., Hussain, M., & Fordjour Antwi-Afari, M. (2023). Deep learning-based construction equipment operators’ mental fatigue classification using wearable EEG sensor data. Advanced Engineering Informatics, 56, 101978. https://doi.org/https://doi.org/10.1016/j.aei.2023.101978
    Meng, X., Zhu, T., & Li, C. (2022). Construction of perfect dispatch learning model based on adaptive GRU. Energy Reports, 8, 668-677. https://doi.org/https://doi.org/10.1016/j.egyr.2022.02.250
    Musarat, M. A., Alaloul, W. S., & Liew, M. S. (2021). Impact of inflation rate on construction projects budget: A review. Ain Shams Engineering Journal, 12(1), 407-414. https://doi.org/https://doi.org/10.1016/j.asej.2020.04.009
    Rafiei, M. H., & Adeli, H. (2018). Novel machine-learning model for estimating construction costs considering economic variables and indexes. Journal of Construction Engineering and Management, 144(12), 04018106.
    Rezaei, M., Mohammadifar, A., Gholami, H., Mina, M., Riksen, M. J. P. M., & Ritsema, C. (2023). Mapping of the wind erodible fraction of soil by bidirectional gated recurrent unit (BiGRU) and bidirectional recurrent neural network (BiRNN) deep learning models. CATENA, 223, 106953. https://doi.org/https://doi.org/10.1016/j.catena.2023.106953
    Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408. https://doi.org/10.1037/h0042519
    Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. https://doi.org/10.1109/78.650093
    Shoar, S., Chileshe, N., & Edwards, J. D. (2022). Machine learning-aided engineering services' cost overruns prediction in high-rise residential building projects: Application of random forest regression. Journal of Building Engineering, 50, 104102. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104102
    Sholeh, M. N. (2023). Optical Microscope Algorithm: A Novel Metaheuristic Inspired by Microscope Magnification for Solving Engineering Optimization Problem National Taiwan University of Science and Technology].
    Tsanas, A., & Xifara, A. (2012). Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings, 49, 560-567. https://doi.org/https://doi.org/10.1016/j.enbuild.2012.03.003
    Xiao, H.-H., Yang, W.-K., Hu, J., Zhang, Y.-P., Jing, L.-J., & Chen, Z.-Y. (2022). Significance and methodology: Preprocessing the big data for machine learning on TBM performance. Underground Space, 7(4), 680-701. https://doi.org/https://doi.org/10.1016/j.undsp.2021.12.003
    Zhou, J., Qin, Y., Chen, D., Liu, F., & Qian, Q. (2022). Remaining useful life prediction of bearings by a new reinforced memory GRU network. Advanced Engineering Informatics, 53, 101682. https://doi.org/https://doi.org/10.1016/j.aei.2022.101682

    無法下載圖示
    全文公開日期 2025/08/23 (校外網路)
    全文公開日期 2025/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE