簡易檢索 / 詳目顯示

研究生: 莊哲亞
Che-Ya Chuang
論文名稱: 都會區大宗建築物質存量之空間與時間分析:以臺北市為例
Spatial-temporal Analysis of Building Material Stock at the Urban Scale:A Case Study of Taipei City
指導教授: 洪嫦闈
Cathy C.W. Hung
口試委員: 陳介豪
Jieh-Haur Chen
楊亦東
I-Tung Yang
李欣運
Hsin-Yun Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 61
中文關鍵詞: 都市礦物質強度建材存量LISA分析潛在二級原料
外文關鍵詞: Urban Mining, Material Intensity, Building Stock, Local Indicators of Spatial Association Analysis, Secondary Raw Material
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的臺北市,其平均屋齡在2022年已達36.2年,且超過30年以上的建築物占現存建築物的87.4%,顯示臺北市建築物更新換代已然刻不容緩,建築材料的使用勢必隨著汰舊換新的過程而有所增加。然在自然資源匱乏的今日為減少自然資源的開發,與其放任營建廢棄物對環境造成破壞,不如就地取材將廢棄物再利用。故本研究探查臺北市區內1971至2020年的建物分佈,與其蘊藏建材存量數量與群聚狀態,並以此判斷未來數年內能夠被拆除轉化成為潛在二級原料的數量預估值以及其開採地區。
    其次,透過臺灣建築個案的分析獲知四大建築類別的主要建材物質強度,結合每年建物樓地板新增面積,並納入空間資訊與區域性空間自相關指標等,進而估算歷年新增建材存量,並探究臺北市內12區456里之間鄰近空間單位內新增建材存量的群聚程度與分佈。其次,加入兩種建築壽命的情境(經濟使用年限以及物理使用年限),量化累計建材存量與拆除預估量,藉此推算臺北市內二級原料開採分佈區域及其潛在開採量。
    研究結果顯示自1985年起,每年新增建材存量開始下降,2020年的新增建材存量僅剩306萬噸,略低於1984年新增建材存量(1150萬噸)高峰的三成(26.6%)。1985年前的區域建材存量以大安區為首,1990年至2020年間,內湖區因工業及商業的發展,其新增建築物質存量在占比逐漸增加,新建熱區由臺北市中心轉移至內湖區。同樣的,無論在經濟使用年限或物理使用年限的情境下,1990年後的累計建材存量(四種大宗資材)主要聚集區坐落在內湖區一帶。另外,根據物理使用年限設定之分析結果,2021年至2025年間,營建廢棄物的主要產出區為大安區及松山區,有望成為近幾年潛在的二級原料開採區域。


    In recent years, implementing a circular economy in cities has been considered as a potential solution for realizing sustainability. At the end of 2021, approximately 87.4% of buildings in Taipei City are over 30 years old, meaning the demolition material flows and inflows of building materials are expected to grow due to urban renewal activities in the coming years. To reduce the usage of natural resources, as well as the demolition waste, the application of secondary material streams could relieve such pressure with a circular approach. Yet, inflows and outflows of construction materials should be identified to estimate the amount and the location of accumulated building stocks, which are treated as potential urban mine.
    For this study, the material intensities of 4 main building materials for 4 building types are assessed with 32 case studies, combined with building use permit data, and 2 scenarios of building lifetime, gross additions to building stocks, accumulated building stocks, and the predicted outflows of demolition wastes are quantified within Taipei City. Also, to understand the spatial characteristic of building stocks, the quantities, and locations of spatial clusters of gross additions to building stocks are analyzed with LISA. The results show that the inventory of new building stocks has been declining since 1985. Da'an District contained the highest building stocks until 1984, then shifted to Neihu District afterward. Hot spot maps are produced for each material to identify where the building stocks are most spatially concentrated. Finally, Da'an District and Songshan District are revealed to be the main regions for secondary raw material extraction from 2021 to 2025.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 v 表目錄 vi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究範圍 4 1.4 研究架構 5 第二章 文獻回顧與探討 9 2.1 都市礦與方法分析 9 2.2 物質存量及物質強度 13 2.3 空間分析 15 2.4 建築壽命年限 18 第三章 研究方法 2121 3.1 研究流程 21 3.2 原始資料與資料前處理 22 3.3 物質強度 26 3.4 物質存量 27 3.5 建築壽命 29 3.6 空間分析 28 第四章 研究結果與討論 33 4.1 物質強度分佈 33 4.2 新增建築物質存量分佈 35 4.3 累計建築物質存量分佈 43 4.4 建築拆除量分析 50 第五章 結論與建議 53 5.1 研究結論 53 5.2 研究限制與建議 55 參考文獻 57

    李瑞陽, & 陳勝義(2010),台中市搶奪犯罪熱點與犯罪區位之空間分析。
      地理研究,(53),23-48。
    俞國華(2010),臺北市住宅建築物經濟耐用年數研究。
    內政部(2022),內政部不動產資訊平臺,https://pip.moi.gov.tw。
    財政部(2017),固定資產耐用年數表,財政部:賦稅署。
    臺北市建築執照存根網際網路查詢系統,臺北市政府都市發展局:
      臺北市建築管理工程處https://img2.gov.taipei/F100/F100.aspx。

    Alexiou, C., Schmid, R. J., Jurgons, R., Kremer, M., Wanner, G., Bergemann,
      C., ... & Parak, F. G. (2006). Targeting cancer cells: magnetic nanoparticles
      as drug carriers. European biophysics journal, 35(5), 446-450.
    Anselin, L. (1989). What is Special About Spatial Data? Alternative Perspectives
      on Spatial Data Analysis (89-4).
    Anselin, L., Dodson, R. F., & Hudak, S. (1993). Linking GIS and spatial data
      analysis in practice. In Geographical systems (pp. 3-23).
    Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical
      analysis, 27(2), 93-115.
    Arora, M., Raspall, F., Cheah, L., & Silva, A. (2020). Buildings and the circular
      economy: Estimating urban mining, recovery and reuse potential of building
      components. Resources, Conservation and Recycling, 154, 104581.
    Baccini, P., & Brunner, P. H. (2012). Metabolism of the anthroposphere: analysis,
      evaluation, design. MIT Press.
    Bowman, W. D., Cleveland, C. C., Halada, Ĺ., Hreško, J., & Baron, J. S. (2008).
      Negative impact of nitrogen deposition on soil buffering capacity. Nature
      Geoscience, 1(11), 767-770.
    Chang, Y. S. (2002). Life cycle assessment on the reduction of carbon dioxide
      emission of buildings. Chenggong University: Tainan, Taiwan.
    Cheng, K. L., Hsu, S. C., Li, W. M., & Ma, H. W. (2018). Quantifying potential
      anthropogenic resources of buildings through hot spot analysis. Resources,
      Conservation and Recycling, 133, 10-20.
    Cheng, K. L., Hsu, S. C., Hung, C. C., Chen, P. C., & Ma, H. W. (2019).
      A hybrid material flow analysis for quantifying multilevel anthropogenic
      resources. Journal of Industrial Ecology, 23(6), 1456-1469.
    Elvidge, C. D., Baugh, K. E., Zhizhin, M., & Hsu, F. C. (2013). Why VIIRS data
      are superior to DMSP for mapping nighttime lights. Proceedings of the
      Asia-Pacific Advanced Network, 35(0), 62.
    Fishman, T., Schandl, H., Tanikawa, H., Walker, P., & Krausmann, F. (2014).
      Accounting for the material stock of nations. Journal of Industrial Ecology,
      18(3), 407-420.
    Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of
      Distance Statistics. Geographical Analysis, 24(3).
    Gontia, P., Nägeli, C., Rosado, L., Kalmykova, Y., & Österbring, M. (2018).
      Material-intensity database of residential buildings: A case-study of Sweden
      in the international context. Resources, Conservation and Recycling, 130,
      228-239.
    Geary, R. C. (1954). The contiguity ratio and statistical mapping. The
      incorporated statistician, 5(3), 115-146.
    Halada, K., Ijima, K., Shimada, M., & Katagiri, N. (2009). A possibility of urban
      mining in Japan. Journal of the Japan Institute of Metals, 73(3), 151-160.
    Hatayama, H., Daigo, I., Matsuno, Y., & Adachi, Y. (2010). Outlook of the world
      steel cycle based on the stock and flow dynamics. Environmental science &
      technology, 44(16), 6457-6463.
    Heeren, N., & Hellweg, S. (2019). Tracking construction material over space and
      time: Prospective and geo‐referenced modeling of building stocks and
      construction material flows. Journal of Industrial Ecology, 23(1), 253-267.
    Hirato, T., Daigo, I., Matsuno, Y., & Adachi, Y. (2009). In-use stock of steel
      estimated by top-down approach and bottom-up approach. ISIJ
      international, 49(12), 1967-1971.
    Hsiao, T. Y., Huang, Y. T., Yu, Y. H., & Wernick, I. K. (2002). Modeling
      materials flow of waste concrete from construction and demolition wastes in
      Taiwan. Resources Policy, 28(1-2), 39-47.
    Hsu, F. C., Elvidge, C. D., & Matsuno, Y. (2013). Exploring and estimating in-
      use steel stocks in civil engineering and buildings from night-time lights.
      International Journal of Remote Sensing, 34(2), 490-504.
    Huang, T., Shi, F., Tanikawa, H., Fei, J., & Han, J. (2013). Materials demand and
      environmental impact of buildings construction and demolition in China
      based on dynamic material flow analysis. Resources, Conservation and
      Recycling, 72, 91-101.
    Huang, S. L., & Hsu, W. L. (2003). Materials flow analysis and emergy
      evaluation of Taipei’s urban construction. Landscape and urban planning,
      63(2), 61-74.
    IEA, International energy agency, World Energy Outlook, Available at:
      http://www.iea.org , Accessed date: 20 June 2017.
    Swilling, M., Hajer, M., Baynes, T., Bergesen, J., Labbé, F., Musango, J. K., ... &
       Tabory, S. (2018). The weight of cities: Resource requirements of future
       urbanization. IRP Reports.
    Jacob, F., & Wollman, E. L. (1961). Sexuality and the genetics of bacteria.
      Sexuality and the genetics of bacteria.
    Kleemann, F., Lederer, J., Rechberger, H., & Fellner, J. (2017). GIS‐based
      analysis of Vienna's material stock in buildings. Journal of Industrial
      Ecology, 21(2), 368-380.
    Kennedy, C., Cuddihy, J., & Engel‐Yan, J. (2007). The changing metabolism of
      cities. Journal of industrial ecology, 11(2), 43-59
    Lanau, M., Liu, G., Kral, U., Wiedenhofer, D., Keijzer, E., Yu, C., & Ehlert, C.
      (2019). Taking stock of built environment stock studies: Progress and
      prospects. Environmental Science & Technology, 53(15), 8499-8515.
    Liu, T.X.; Hu, D. (2006). The Environmental Impact of Residential Building
      Construction in Beijing: 1949-2003-Assessing the Construction Materials’
      Environmental Impact by LCA. Journal of University of Chinese Academy
      of Sciences, 23(2), 231-241
    Matthews, H., Taylor, M., Sherwood, K., Tucker, F., & Limb, M. (2000).
      Growing-up in the countryside: children and the rural idyll. Journal of rural
      studies, 16(2), 141-153.
    Miatto, A., Schandl, H., & Tanikawa, H. (2017). How important are realistic
      building lifespan assumptions for material stock and demolition waste
      accounts?. Resources, Conservation and Recycling, 122, 143-154.
    Miatto, A., Schandl, H., Forlin, L., Ronzani, F., Borin, P., Giordano, A., &
      Tanikawa, H. (2019). A spatial analysis of material stock accumulation and
      demolition waste potential of buildings: A case study of Padua. Resources,
       Conservation and Recycling, 142, 245-256.
    Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika,
      37(1/2), 17-23.
    Müller, D. B. (2006). Stock dynamics for forecasting material flows—Case study
      for housing in The Netherlands. Ecological economics, 59(1), 142-156.
    Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics:
      distributional issues and an application. Geographical analysis, 27(4), 286-
      306.
    Ortlepp, R., Gruhler, K., & Schiller, G. (2016). Material stocks in Germany's
      non-domestic buildings: a new quantification method. Building Research &
      Information, 44(8), 840-862.
    Pauliuk, S., Milford, R. L., Müller, D. B., & Allwood, J. M. (2013). The steel
      scrap age. Environmental science & technology, 47(7), 3448-3454.
    Peled, Y., & Fishman, T. (2021). Estimation and mapping of the material stocks
      of buildings of Europe: a novel nighttime lights-based approach. Resources,
      Conservation and Recycling, 169, 105509.
    Sandberg, N. H., Sartori, I., & Brattebø, H. (2014). Using a dynamic segmented
      model to examine future renovation activities in the Norwegian dwelling
      stock. Energy and Buildings, 82, 287-295.
    Schiller, G., Müller, F., & Ortlepp, R. (2017). Mapping the anthropogenic stock
       in Germany: Metabolic evidence for a circular economy. Resources,
      Conservation and Recycling, 123, 93-107.
    Sokal, R. R., & Oden, N. L. (1978). Spatial autocorrelation in biology: 2. Some
      biological implications and four applications of evolutionary and ecological
      interest. Biological Journal of the Linnean Society, 10(2), 229-249.
    Sprecher, B., Verhagen, T. J., Sauer, M. L., Baars, M., Heintz, J., & Fishman, T.
      (2022). Material intensity database for the Dutch building stock: Towards
      Big Data in material stock analysis. Journal of Industrial Ecology, 26(1),
      272-280.
    Tanikawa, H., Fishman, T., Okuoka, K., & Sugimoto, K. (2015). The weight of
      society over time and space: A comprehensive account of the construction
      material stock of Japan, 1945–2010. Journal of Industrial Ecology, 19(5),
      778-791.
    Tanikawa, H., & Hashimoto, S. (2009). Urban stock over time: spatial material
      stock analysis using 4d-GIS. Building research & information, 37(5-6), 483.
      502.
    Upton, G., & Fingleton, B. (1985). Spatial data analysis by example. Volume 1:
      Point pattern and quantitative data. John Wiley & Sons Ltd.
    UN-DESA (2018).World Urbanization Prospects 2018. United Nations,
      Department of Economic and Social Affairs, New York.
    Vásquez, A. E. (2016). Infraestructura verde, servicios ecosistémicos y sus
      aportes para enfrentar el cambio climático en ciudades: el caso del corredor
      ribereño del río Mapocho en Santiago de Chile. Revista de Geografía Norte
      Grande, (63), 63-86.
    Wiedenhofer, D., Steinberger, J. K., Eisenmenger, N., & Haas, W. (2015).
      Maintenance and expansion: modeling material stocks and flows for
      residential buildings and transportation networks in the EU25. Journal of
      Industrial Ecology, 19(4), 538-551.
    Zhao, G., Ruan, D., Wang, Q., Zhang, X., & Wang, Y. (2018). Systemic
      boundaries in industrial systems: a new concept defined to improve LCA for
      metallurgical and manufacturing systems. Journal of cleaner production,
      187, 717-729.

    無法下載圖示 全文公開日期 2025/09/29 (校內網路)
    全文公開日期 2027/09/29 (校外網路)
    全文公開日期 2027/09/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE