簡易檢索 / 詳目顯示

研究生: 劉又齊
Yu-Chi Liu
論文名稱: 以一階氧化還原法合成之 Ag@CeO2 核殼奈米結構之形貌及反應機制之研究
Study of the Morphology and Mechanism of Ag@CeO2 Core-shell Nanoparticles Synthesized by One-Pot Redox Reaction Method
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 黃炳照
Bing-Joe Hwang
Alexandre Gloter
陳詩芸
Shih-Yun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 核殼結構X 光吸收光譜界面奈米顆粒缺陷
外文關鍵詞: core-shell, XAS, interface, defect, nanoparticle.
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以一階氧化還原法合成 Ag@CeO2 核殼結構奈米顆粒,並透過控制硝酸鈰濃度改變奈米顆粒的型態,所合成的樣品之成分、形貌、結構及金屬離子價態以 X 光繞射儀、穿透式電子顯微鏡、X光吸收光譜、拉曼光譜以及電子能量損失光譜進行分析。結果顯示,一階氧化還原法可成功製備出 Ag@CeO2,當前驅物中的鈰與銀
的比例為 1:3 時,可合成核直徑為 50 nm,殼厚度為 20 nm 的Ag@CeO2 核殼結構奈米顆粒。若降低前驅物中的硝酸鈰濃度、或提高銀離子濃度,則會形成多層結構,在 CeO2 殼層表面會沉積許多小尺寸的銀顆粒。XAS 分析則發現,不同於其他的核殼結構製程,以一階氧化還原法所合成脂 Ag@CeO2 核殼結構奈米顆粒在核殼界面處缺陷數量較少,樣品中 Ce3+會隨著 Ag 與 CeO2 界面面積提高而下降,此現象推測是由所進行的反應過程所造成。最後,在所合成的樣品中,只有多層結構的樣品具有微弱的室溫鐵磁特性,推測與其缺陷分佈有關。


In this study , Ag@CeO2 core-shell structure nanoparticles (NPs) were synthesized by one-pot redox reaction. X-rays diffraction (XRD), Transmission electron microscope (TEM), X-ray absorption spectroscopy (XAS), Raman spectra and EELS (electron energy loss spectroscopy) were utilized to investigate the morphology, crystal structure and valence state of cations. Our results showed that the morphology of Ag@CeO2 NPs
varied as changing the relative concentration between Ce and Ag in precursor. As the concentration ratio of Ce(NO3)/AgNO3 increased from 0.33 to 0.041, nanoparticles changed from Ag@CeO2 core-shell structure nanoparticles to multi-shell structure. Ag nanoparticles were observed on the surface of CeO2 shell. Different to Ag@CeO2 core-shell NPs prepared by two- step process, XAS analysis demonstrated there are fewer defects
present in this study, especially at the interface between Ag core and CeO2 shell. At last, most NPs are super-papamagnetic at room temperature. The weak ferromagnetism observed of the multi- shell NPs was attributed to the distribution of defects.

目 錄 摘要............................................................................................................................... III Abstract .........................................................................................................................V 目 錄...........................................................................................................................VI 圖索引.........................................................................................................................VIII 第一章 緒論 ................................................................................................................. 1 1.1 前言.................................................................................................................. 1 1.2 研究背景.......................................................................................................... 2 1.3 研究動機與目的 ............................................................................................. 3 第二章 文獻回顧與製程介紹 ..................................................................................... 5 2.1 二氧化鈰介紹 ................................................................................................ 5 2.1.1 二氧化鈰之基本性質 .......................................................................... 5 2.1.2 二氧化鈰之合成法 .............................................................................. 6 2.1.3 具核殼結構之二氧化鈰應用 ............................................................ 11 2.1.4 觸媒特性之研究 ............................................................................... 14 2.2 核殼結構之介紹 .......................................................................................... 18 2.2.1 核殼結構之分類 ................................................................................ 18 2.2.2 金屬-金屬氧化物之核殼奈米結構 ................................................... 21 2.2.3 核殼結構的製程介紹 ........................................................................ 23 2.2.4 一階氧化還原法(One-Pot Redox Reaction) .................................... 27 第三章 實驗方法與儀器介紹 ................................................................................... 29 3.1.1 藥品及氣體 ........................................................................................ 29 3.1.2 實驗流程............................................................................................. 30 3.1.3 Ag@CeO2 奈米顆粒製備 .................................................................. 31 3.2 X 光繞射分析 ................................................................................................ 33 3.3 穿透式電子顯微鏡分析 .............................................................................. 34 3.4 X 光吸收光譜分析 ........................................................................................ 36 3.4.1 XAS 分析介紹 ................................................................................... 36 3.4.2 XAS 光分析量測方法 ....................................................................... 38 3.5 Raman 光譜分析 ......................................................................................... 42 3.6 掃描穿透電子顯微鏡/電子能量損失能譜 ................................................. 43 3.7 VSM 分析 ...................................................................................................... 44 第四章 結果與討論 ................................................................................................... 46 4.1 Ag@CeO2 核殼結構奈米顆粒之合成與微結構分析 ................................. 46 4.1.1 XRD 及 TEM 分析 ............................................................................ 46 4.1.2 XANES 分析 ...................................................................................... 50 4.1.3 STEM/EELS 分析 ............................................................................ 55 VII 4.1.4 不同 Ag@CeO2 核殼結構形成機制討論 ........................................ 57 4.2 具核殼結構之 Ag@CeO2 奈米顆粒磁性量測 ........................................... 60 第五章 結論 ............................................................................................................... 62 參考文獻...................................................................................................................... 63

參考文獻
1. Henglein, A., Small-particle research: physicochemical properties of
extremely small colloidal metal and semiconductor particles. Chemical
Reviews, 1989. 89(8): p. 1861-1873.
2. Hoener, C.F., et al., Demonstration of a shell-core structure in layered
cadmium selenide-zinc selenide small particles by x-ray photoelectron and
Auger spectroscopies. The Journal of Physical Chemistry, 1992. 96(9): p.
3812-3817.
3. Ghosh Chaudhuri, R. and S. Paria, Core/Shell Nanoparticles: Classes,
Properties, Synthesis Mechanisms, Characterization, and Applications.
Chemical Reviews, 2012. 112(4): p. 2373-2433.
4. Graf, C. and A. van Blaaderen, Metallodielectric Colloidal Core−Shell
Particles for Photonic Applications. Langmuir, 2002. 18(2): p. 524-534.
5. Deng, Y., et al., Superparamagnetic High-Magnetization Microspheres with an
Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for
Removal of Microcystins. Journal of the American Chemical Society, 2008.
130(1): p. 28-29.
6. Sun, Y.-K., et al., Synthesis of Spherical Nano- to Microscale Core−Shell
Particles Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2 and Their Applications
to Lithium Batteries. Chemistry of Materials, 2006. 18(22): p. 5159-5163.
7. 莊浩宇 and H.-Y. Chuang, 二氧化鈦奈米粒子及其金屬核殼型奈米複合材
料之製備與應用研究.
8. Smith, J.N., J. Meadows, and P.A. Williams, Adsorption of
Polyvinylpyrrolidone onto Polystyrene Latices and the Effect on Colloid
Stability. Langmuir, 1996. 12(16): p. 3773-3778.
9. Kim, S., et al., Type-II Quantum Dots:  CdTe/CdSe(Core/Shell) and
CdSe/ZnTe(Core/Shell) Heterostructures. Journal of the American Chemical
Society, 2003. 125(38): p. 11466-11467.
10. Bertrand, P., et al., Imaging of magnetic domains with scanning tunneling
optical microscopy. Journal of Applied Physics, 1998. 83(11): p. 6834-6836.
11. Kalele, S.A., et al., Optical detection of antibody using silica–silver core–shell
particles. Chemical Physics Letters, 2005. 404(1): p. 136-141.
12. West, J.L. and N.J. Halas, Engineered Nanomaterials for Biophotonics
Applications: Improving Sensing, Imaging, and Therapeutics. Annual Review
of Biomedical Engineering, 2003. 5(1): p. 285-292.
13. Cheng, B., Y. Le, and J. Yu, Preparation and enhanced photocatalytic activity
of Ag@TiO2 core–shell nanocomposite nanowires. Journal of Hazardous Materials, 2010. 177(1): p. 971-977.
14. Wu Zhi, G., et al., Core-shell SiO2/Ag composite spheres: synthesis,
characterization and photocatalytic properties, in Materials Science-Poland.
2016. p. 806.
15. Kayama, T., K. Yamazaki, and H. Shinjoh, Nanostructured Ceria−Silver
Synthesized in a One-Pot Redox Reaction Catalyzes Carbon Oxidation.
Journal of the American Chemical Society, 2010. 132(38): p. 13154-13155.
16. Centeno, M., et al., Au/CeO2 Catalysts: Structure and CO Oxidation Activity.
Catalysts, 2016. 6(10): p. 158.
17. Montini, T., et al., Fundamentals and Catalytic Applications of CeO2-Based
Materials. Chemical Reviews, 2016. 116(10): p. 5987-6041.
18. Patil, D., et al., Enzymatic glucose biosensor based on CeO2 nanorods
synthesized by non-isothermal precipitation. Biosensors and Bioelectronics,
2012. 31(1): p. 176-181.
19. Karimi, A., A. Othman, and S. Andreescu, Portable Enzyme-Paper Biosensors
Based on Redox-Active CeO2 Nanoparticles. Methods in Enzymology, 2016.
571: p. 177-195.
20. Liu, Y., et al., Interfacial redox reaction-directed synthesis of silver@cerium
oxide core–shell nanocomposites as catalysts for rechargeable lithium–air
batteries. Journal of Power Sources, 2015. 286: p. 136-144.
21. Yinglin, L., et al., Size dependent ferromagnetism in cerium oxide (CeO 2 )
nanostructures independent of oxygen vacancies. Journal of Physics:
Condensed Matter, 2008. 20(16): p. 165201.
22. Boffa, V., et al., Laser-ablation deposition of CeO2 thin films on biaxially
textured nickel substrates. Physica C: Superconductivity, 1999. 312(3): p. 202-212.
23. Tsai, W.-C. and T.-Y. Tseng, Structural and electrical properties of cerium
dioxide films grown by RF magnetron sputtering. Journal of Materials
Science: Materials in Electronics, 1997. 8(5): p. 313-320.
24. Wu, L., et al., Oxidation state and lattice expansion of
${\mathrm{CeO}}_{2\ensuremath{-}x}$ nanoparticles as a function of
particle size. Physical Review B, 2004. 69(12): p. 125415.
25. Skårman, B., et al., Morphology and Structure of CuOx/CeO2 Nanocomposite
Catalysts Produced by Inert Gas Condensation:  An HREM, EFTEM, XPS,
and High-Energy Diffraction Study. Chemistry of Materials, 2002. 14(9): p.
3686-3699.
26. 張宏毅 and H.-Y. Chang, 二氧化鈰奈米粉體之晶形操控-製備、特性分析
及氧化催化活性.
27. Zhou, X.-D., W. Huebner, and H.U. Anderson, Room-temperature
homogeneous nucleation synthesis and thermal stability of nanometer single
crystal CeO2. Applied Physics Letters, 2002. 80(20): p. 3814-3816.
28. Tsunekawa, S., et al., Structural study on monosize CeO2-x nano-particles.
Nanostructured Materials, 1999. 11(1): p. 141-147.
29. Fierro, J.L.G., S. Mendioroz, and A.M. Olivan, Surface chemistry of cerium
oxide prepared by an isobaric thermal procedure. Journal of Colloid and
Interface Science, 1985. 107(1): p. 60-69.
30. Riccardi, C.S., et al., Preparation of CeO2 by a simple microwave–
hydrothermal method. Solid State Ionics, 2009. 180(2): p. 288-291.
31. Liu, J., et al., Synthesis and characterization of CeO2 by the hydrothermal
method assisted by carboxymethylcellulose sodium. Reaction Kinetics and
Catalysis Letters, 2009. 98(2): p. 311.
32. Kirk, N.B. and J.V. Wood, The effect of the calcination process on the
crystallite shape of sol-gel cerium oxide used for glass polishing. Journal of
Materials Science, 1995. 30(8): p. 2171-2175.
33. XU, H., et al., Synthesis of solid, spherical CeO2 particles prepared by the
spray hydrolysis reaction method. Journal of the American Ceramic Society,
2002. 85(1): p. 139-144.
34. Elidrissi, B., et al., Structural and optical properties of CeO2 thin films
prepared by spray pyrolysis. Thin Solid Films, 2000. 379(1): p. 23-27.
35. Mädler, L., W.J. Stark, and S.E. Pratsinis, Flame-made Ceria Nanoparticles.
Journal of Materials Research, 2011. 17(6): p. 1356-1362.
36. Czerwinski, F. and J.A. Szpunar, The Nanocrystalline Ceria Sol-Gel Coatings
for High Temperature Applications. Journal of Sol-Gel Science and
Technology, 1997. 9(1): p. 103-114.
37. Li, M., et al., Relationship between the surface chemical states and magnetic
properties of CeO2 nanoparticles. Applied Physics Letters, 2009. 94(15): p.
152511.
38. Yin, L., et al., Sonochemical Synthesis of Cerium Oxide Nanoparticles—Effect
of Additives and Quantum Size Effect. Journal of Colloid and Interface
Science, 2002. 246(1): p. 78-84.
39. 連昭晴 and C.-C. Lien, 鐵/金核殼型磁性複合奈米粒子 之製備與應用.
40. Chen, S.-Y., et al., Oxygen Vacancy Dependent Magnetism of CeO2
Nanoparticles Prepared by Thermal Decomposition Method. The Journal of
Physical Chemistry C, 2010. 114(46): p. 19576-19581.
41. Hirano, M. and E. Kato, Hydrothermal synthesis of cerium (IV) oxide. Journal
of the American Ceramic Society, 1996. 79(3): p. 777-780.
42. Bae, D.-S., et al., Synthesis and characterization of ultrafine CeO2 particles
by glycothermal process. Materials Letters, 2002. 56(4): p. 610-613.
43. Li, R., et al., Synthesis and UV -shielding properties of ZnO- and CaO-doped
CeO2 via soft solution chemical process. Solid State Ionics, 2002. 151(1): p.
235-241.
44. Masui, T., et al., Synthesis of BN-coated CeO2 fine powder as a new UV
blocking material. Journal of Materials Chemistry, 2000. 10(2): p. 353-357.
45. Tsunekawa, S., et al. Ultraviolet absorption spectra of CeO2 nano-particles.
in Materials Science Forum. 1999. Trans Tech Publ.
46. Tsunekawa, S., et al., Blueshifts in the ultraviolet absorption spectra of cerium
oxide nanocrystallites. Journal of applied physics, 2003. 94(5): p. 3654-3656.
47. Bamwenda, G.R. and H. Arakawa, Cerium dioxide as a photocatalyst for
water decomposition to O 2 in the presence of Ce aq 4+ and Fe aq 3+ species.
Journal of Molecular Catalysis A: Chemical, 2000. 161(1): p. 105-113.
48. Bamwenda, G.R., et al., The photocatalytic oxidation of water to O 2 over
pure CeO 2, WO 3, and TiO 2 using Fe 3+ and Ce 4+ as electron acceptors.
Applied Catalysis A: General, 2001. 205(1): p. 117-128.
49. Coronado, J.M., et al., EPR study of the radicals formed upon UV irradiation
of ceria-based photocatalysts. Journal of Photochemistry and Photobiology A:
Chemistry, 2002. 150(1): p. 213-221.
50. Sammes, N. and Z. Cai, Ionic conductivity of ceria/yttria stabilized zirconia
electrolyte materials. Solid State Ionics, 1997. 100(1-2): p. 39-44.
51. Gauckler, L.J., M. Go¨ dickemeier, and D. Schneider, Nonstoichiometry and
defect chemistry of ceria solid solutions. Journal of Electroceramics, 1997.
1(2): p. 165-172.
52. Trovarelli, A., Catalytic properties of ceria and CeO2-containing materials.
Catalysis Reviews, 1996. 38(4): p. 439-520.
53. Oh, S.H. and C.C. Eickel, Effects of cerium addition on CO oxidation kinetics
over alumina-supported rhodium catalysts. Journal of Catalysis, 1988. 112(2):
p. 543-555.
54. Nunan, J.G., et al., Physicochemical properties of Ce-containing three-way
catalysts and the effect of Ce on catalyst activity . Journal of Catalysis, 1992.
133(2): p. 309-324.
55. Sekke, C., F. Garin, and G. Belot, reactivity of Pt/Al2O3 and Pt-CeO2/Al2O3
catalysts for the oxidation of carbon oxidation of carbon monoxide by oxygen.
J Catal, 1993. 141(1): p. 1-8.
56. Frost, J., Junction effect interactions in methanol synthesis catalysts. Nature,
1988. 334: p. 577-580.57. Golunski, S.E., et al., Origins of low-temperature three-way activity in Pt/CeO
2. Applied Catalysis B: Environmental, 1995. 5(4): p. 367-376.
58. Kašpar, J., P. Fornasiero, and M. Graziani, Use of CeO2-based oxides in the
three-way catalysis. Catalysis Today, 1999. 50(2): p. 285-298.
59. Izu, N., et al., Resistive oxygen gas sensors based on CeO 2 fine powder
prepared using mist pyrolysis. Sensors and Actuators B: Chemical, 2002.
87(1): p. 95-98.
60. Izu, N., W. Shin, and N. Murayama, Fast response of resistive-type oxygen gas
sensors based on nano-sized ceria powder. Sensors and Actuators B:
Chemical, 2003. 93(1): p. 449-453.
61. Trinchi, A., et al., Investigation of sol–gel prepared CeO 2–TiO 2 thin films for
oxygen gas sensing. Sensors and Actuators B: Chemical, 2003. 95(1): p. 145-150.
62. Atanasov, P., et al., (1 10) Nd: KGW waveguide films grown on CeO 2/Si
substrates by pulsed laser deposition. Thin Solid Films, 2004. 453: p. 150-153.
63. Shirakawa, M., et al., Fabrication and characterization of a CeO 2 buffer
layer on c-plane and tilt-c-plane sapphire substrates. Physica C:
Superconductivity, 2003. 392: p. 1346-1352.
64. Han, M., et al., Quantum-dot-tagged microbeads for multiplexed optical
coding of biomolecules. Nature biotechnology, 2001. 19(7): p. 631-635.
65. Morriss, R.H. and L.F. Collins, Optical Properties of Multilayer Colloids. The
Journal of Chemical Physics, 1964. 41(11): p. 3357-3363.
66. Murray, C., D.J. Norris, and M.G. Bawendi, Synthesis and characterization of
nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor
nanocrystallites. Journal of the American Chemical Society, 1993. 115(19): p.
8706-8715.
67. Toshima, N., et al., Novel synthesis, structure and catalysis of inverted
core/shell structured Pd/Pt bimetallic nanoclusters. The European Physical
Journal D-Atomic, Molecular, Optical and Plasma Physics, 2001. 16(1): p.
209-212.
68. Nalwa, H.S., Encyclopedia of Nanoscience and Nanotechnology; Volume 7.
2004: American Scientific Publishers.
69. Berry, C.C. and A.S. Curtis, Functionalisation of magnetic nanoparticles for
applications in biomedicine. Journal of physics D: Applied physics, 2003.
36(13): p. R198.
70. Shinkai, M., Functional magnetic particles for medical application. Journal of
bioscience and bioengineering, 2002. 94(6): p. 606-613. 71. Kayama, T., K. Yamazaki, and H. Shinjoh, Nanostructured ceria− silver
synthesized in a one-pot redox reaction catalyzes carbon oxidation. Journal of
the American Chemical Society, 2010. 132(38): p. 13154-13155.
72. Zhang, N., X. Fu, and Y.-J. Xu, A facile and green approach to synthesize Pt@
CeO 2 nanocomposite with tunable core-shell and yolk-shell structure and its
application as a visible light photocatalyst. Journal of Materials Chemistry,
2011. 21(22): p. 8152-8158.
73. Huang, J., et al., Crystal engineering and SERS properties of Ag–Fe 3 O 4
nanohybrids: from heterodimer to core–shell nanostructures. Journal of
Materials Chemistry, 2011. 21(44): p. 17930-17937.
74. Qi, J., et al., Facile synthesis of core–shell Au@ CeO 2 nanocomposites with
remarkably enhanced catalytic activity for CO oxidation. Energy &
Environmental Science, 2012. 5(10): p. 8937-8941.
75. Zhang, J., et al., Fabrication of Ag-CeO2 core-shell nanospheres with
enhanced catalytic performance due to strengthening of the interfacial
interactions. Journal of Materials Chemistry, 2012. 22(21): p. 10480-10487.
76. Mitsudome, T., et al., Design of a silver–cerium dioxide core–shell
nanocomposite catalyst for chemoselective reduction reactions. Angewandte
Chemie International Edition, 2012. 51(1): p. 136-139.
77. Sun, H., et al., Investigating the multiple roles of polyvinylpyrrolidone for a
general methodology of oxide encapsulation. Journal of the American
Chemical Society, 2013. 135(24): p. 9099-9110.
78. Chen, J., et al., Synthesis of mesoporous silica hollow nanospheres with
multiple gold cores and catalytic activity. Journal of Colloid and Interface
Science, 2014. 429: p. 62-67.
79. Eberl, D.D., et al., Ostwald ripening of clays and metamorphic minerals.
Science(Washington, D. C.), 1990. 248(4954): p. 474-7.
80. Alemán, J., et al., Definitions of terms relating to the structure and processing
of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC
Recommendations 2007). Pure and Applied Chemistry, 2007. 79(10): p. 1801-1829.
81. Lifshitz, I.M. and V.V. Slyozov, The kinetics of precipitation from
supersaturated solid solutions. Journal of physics and chemistry of solids,
1961. 19(1-2): p. 35-50.
82. Wagner, C., Theory of precipitate change by redissolution. Z. Elektrochem,
1961. 65(7/8): p. 581-91.
83. Voorhees, P.W., The theory of Ostwald ripening. Journal of Statistical Physics,
1985. 38(1): p. 231-252. 84. Yec, C.C. and H.C. Zeng, Synthesis of complex nanomaterials via Ostwald
ripening. Journal of Materials Chemistry A, 2014. 2(14): p. 4843-4851.
85. Gawande, M.B., et al., Core–shell nanoparticles: synthesis and applications in
catalysis and electrocatalysis. Chemical Society Reviews, 2015. 44(21): p.
7540-7590.
86. Tung, H.-T., et al., A novel method for preparing vertically grown singlecrystalline gold nanowires. Nanotechnology, 2008. 19(45): p. 455603.
87. Tung, H.-T., et al., Thermally assisted photoreduction of vertical silver
nanowires. Journal of Materials Chemistry, 2009. 19(16): p. 2386-2391.
88. Tung, H.-T., et al., Synthesis of surfactant-free aligned single crystal copper
nanowires by thermal-assisted photoreduction. Crystal Growth and Design,
2008. 8(9): p. 3415-3419.
89. Liao, W.S., et al., A rapid prototyping approach to Ag nanoparticle fabrication
in the 10–100 nm range. Advanced Materials, 2006. 18(17): p. 2240-2243.
90. Haruta, M., Size-and support-dependency in the catalysis of gold. Catalysis
today, 1997. 36(1): p. 153-166.
91. Song, J.-M., et al., Effect of surface physics of metal oxides on the ability to
form metallic nanowires. Applied Surface Science, 2013. 285: p. 450-457.
92. Aneggi, E., et al., Soot combustion over silver-supported catalysts. Applied
Catalysis B: Environmental, 2009. 91(1): p. 489-498.
93. Machida, M., et al., On the reasons for high activity of CeO2 catalyst for soot
oxidation. Chemistry of Materials, 2008. 20(13): p. 4489-4494.
94. Shimizu, K.-i., H. Kawachi, and A. Satsuma, Study of active sites and
mechanism for soot oxidation by silver-loaded ceria catalyst. Applied
Catalysis B: Environmental, 2010. 96(1): p. 169-175.
95. Yamazaki, K., et al., A mechanistic study on soot oxidation over CeO2–Ag
catalyst with ‘rice-ball’ morphology. Journal of Catalysis, 2011. 282(2): p.
289-298.

無法下載圖示 全文公開日期 2022/08/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE