簡易檢索 / 詳目顯示

研究生: 蕭若霜
JO-SHUANG-HSIAO
論文名稱: 聚二甲基矽氧烷光柵基材表面改質聚電解質多層膜在全血中雷射繞射檢測循環腫瘤細胞與細胞培養光學定量研究
Polyelectrolyte Multilayer Grafting to Poly(dimethylsiloxane) Grating Substrate for Detection of Circulating Tumor Cells by Laser Diffraction in Whole Blood and Cell Culture Optical Quantitative Analysis
指導教授: 蘇舜恭
Shuenn-kung Su
口試委員: 陳建光
黃昭蓮
呂建興
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 208
中文關鍵詞: 聚二甲基矽氧烷聚電解質多層膜循環腫瘤細胞抗沾黏細胞培養雷射
外文關鍵詞: polydimethysiloxane, layer by layer, circulating tumor cells, antifouling, cell culture, laser, monitor
相關次數: 點閱:315下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以VLSI技術在矽晶片上製備出洞型有陣序列,再利用聚二甲基矽氧烷(Poly(dimethylsiloxane), PDMS)將矽晶片上的圖案化轉印成為PDMS柱型結構為500nm與1µm的一維以及二維光柵。基材表面進行親水處理、矽烷類自組裝改質、以靜電吸附方式將聚丙烯酸poly(acrylic acid)與支鏈聚乙烯亞胺Branched Polyethylenimine組成聚電解質多層膜塗佈基材上,最後以海藻酸作為聚電解質多層膜之最外層,透過EDC/NHS的反應接上Protein G與上皮細胞黏附分子抗體(Anti-Epithelial Cellular Adhecion Molecule,Anti-EpCAM)用以捕捉血液中具有EpCAM表現之循環腫瘤細胞(Circulating tumor cells,CTCs),由於血液分離術無法分離CTC與白血球,因此搭配牛血清蛋白(Bovine Serum Albumin,BSA)處理降低白血球沾黏。
依實驗結果得知500 nmPDMS、1µmPDMS分別在聚電解質多層膜第三層(500 nmPDMS-LbL3)、第五層(1µmPDMS-LbL5)時有最佳表面形貌,同時對具有EpCAM表現之循環腫瘤癌細胞捕獲有最大的雷射能量變化,分別為59.95%、49.78%,選其作為後續實驗之基材。基材對具有EpCAM表現之循環腫瘤癌細胞之靈敏度測試,結果顯示其最低偵測極限為2顆CTCs,其雷射能量損失分別為15.42%、11.95%,
以螢光顯微鏡觀察佐證,結果顯示當基材上捕獲2-40顆具有EpCAM表現且大小為15-20µm之循環腫瘤癌細胞時,雷射能量損失隨著細胞顆數不同呈現高度相關性,R2為0.9935、0.9836。臨床試驗中檢測24位患有子宮內膜癌之病人,以雷射能量損失對上癌症指數CA125,其中有10位病人癌症指數CA125呈現正常值以下,仍有捕獲2-12顆CTCs,結果顯示此方法檢測子宮內膜癌靈敏度高於CA125四倍。
細胞培養實驗其結果顯示此基材確實提升細胞培養效果,細胞生長性分別從100%提升至253.33%(500nm柱型)、210.38%(1µm柱型),最後以海藻酸裂解酶對培養後之基材做釋放,其釋放率達到92.30%(500nm柱型)、94.20%(1µm柱型)。證明此方法可望用於癌症前期診斷及臨床檢體病人手術預後追蹤,且基材捕獲檢體細胞後可直接培養釋放。


In this study, we patterned ordered hole arrays with photoresist on the silicon surface by VLST process. The regular patterns of photoresist were transferred with polydimethylsiloxane (PDMS) to generate ordered 500nm and 1µm pillar arrays of 1D and 2D grating of PDMS.
The grating surfaces were sequentially modified with hydrophilic treatment, silane self-assembly, and electrostatic adsorption is adopted to coat the substrate with two types of polymer, poly (acrylic acid) and branched polyethylenimine. We use alginic acid as the outermost layer of the polyelectrolyte multilayer film. This polymer has a -COOH functional group, which can be use to connect to Protein G and Anti-Epithelial Cellular Adhecion Molecule (Anti-EpCAM) by EDC/NHS reaction. Anti-EpCAM a kind of antibody for immunosorbent of CTC. Finally, bovine serum albumin (BSA) was exploited to educe the fouling of white blood cell (WBCs).
According to the experimental results, we know that the best surface morphology of 500nmPDMS, 1µmPDMS is the third layer (500 nmPDMS-LbL3) and the fifth layer (1µmPDMS-LbL5), and the largest laser energy change captured for CTCs are 59.95% and 49.78%, and they were selected as the substrates for subsequent experiments. The sensitivity test of the substrate to CTCs showed that the detection limit was two CTCs. The laser energy loss were 15.42% and 11.95%, using the fluorescent microscope to observe, and the results showed that when 2-40 CTCs and size of 15-20µm were captured on the substrate, the laser energy loss showed a high correlation with the number of cells, showed R2 0.9935, 0.9836.
In clinical trials, 24 patients have endometrial cancer, and the laser energy loss compared with the cancer index CA125. Among them, 10 patients had a cancer index CA125 below normal, and 2-12 CTCs were still captured. The sensitivity of this method is four times greater than CA125.
The results of the cell culture show that the substrate can enhance the cell culture effect, and the cell growth rate can increase from 100% to 253.33% (500nm PDMS), 210.38% (1µm PDMS). Finally, we used the alginate lyase to release the CTCs. The release rate is 92.30% (500nm PDMS) and 94.20% (1µm PDMS). It proves that this method can be used in pre-cancer diagnosis and surgical prognosis tracking of clinical specimen patients, and the substrate cells can be directly cultured and released after capturing the specimen cells.

目錄 摘要 ..................................................................... I Abstract ................................................................III 致謝 ....................................................................... V 目錄 ....................................................................... IX 圖目錄 ................................................................... XVII 表目錄 ................................................................... XXVII 1. 緒論 ................................................................... 1 1.1. 研究背景 ............................................................. 1 1.2. 研究動機與目的 .................................................. 6 2. 理論與文獻回顧 ........................................................ 8 2.1. 循環腫瘤細胞 ...................................................... 8 2.1.1. 循環腫瘤細胞介紹 ....................................................... 8 2.1.2. 循環腫瘤細胞生物特性標記 ..................................... 10 2.1.3. 循環腫瘤細胞捕獲 ..................................................... 11 2.2. 循環腫瘤細胞培養 ............................................. 14 2.2.1. 細胞培養 .............................................................14 2.2.2. 三微結構培養...........................................................15 2.2.3. 細胞貼附行為........................................................... 17 2.3. 聚二甲基矽氧烷 ................................................. 18 2.4. 微影製程及翻模 ................................................. 19 2.5. 自組裝單分子層 ................................................. 22 2.6. 共價鍵固定法(EDC/NHS reaction) ....................... 24 2.7. 聚電解質多層法 ................................................. 26 2.8. 海藻酸(ALG) ....................................................... 29 2.9. 聚丙烯酸(PAA) ................................................... 31 2.10. 支鏈聚乙烯亞胺(bPEI) ........................................ 32 2.11. 重組蛋白與抗體 ................................................. 33 2.12. 光柵效應 ............................................................ 34 2.13. 細胞釋放 ............................................................ 36 3. 儀器原理 .................................................................. 39 3.1. X射線光電子能譜儀(X-ray photoelectron spectroscopy,XPS) ................. 39 3.2. 原子力顯微鏡(Atomic Force Microscope, AFM)... 42 3.3. 高解析度場發射掃描式電子顯微鏡(Field-emission scanning electron microscope,FE-SEM) ......................... 47 3.4. 陣列光束雷射分析儀(BeamMic) ......................... 49 3.5. 傅立葉轉換紅外線光譜儀 (Fourier-Transform Infrared Spectroscopy, FT-IR) .......................................... 53 3.6. 表面電位分析儀(Zeta-potential) ......................... 58 3.7. 電漿蝕刻機(Plasma Machine) ............................. 59 3.8. 接觸角 (Contact Angle, CA) ................................ 61 3.9. 雷射掃描式共軛焦顯微鏡 (Laser scanning confocal microscope,LSCM) .......................................... 63 3.10. 螢光顯微鏡 ........................................................ 65 4. 實驗流程與方法 ....................................................... 68 4.1. 實驗流程圖 ........................................................ 68 ........................................................................ 68 4.2. 實驗藥品 ............................................................ 69 4.3. 實驗儀器 ............................................................ 74 4.4. 實驗步驟 ............................................................ 76 4.4.1. 微影製程製備具有圖案化光阻層 ............................. 76 4.4.4.1 表面預處理 .......................................................... 76 4.4.4.2 光阻塗佈 ............................................................. 77 4.4.4.3 軟烤 ............................................................... 77 4.4.4.4 曝光 ............................................................... 77 4.4.4.5 顯影 .............................................................. 78 4.4.2. 圖案化轉印於PDMS薄膜 ......................................... 78 4.4.3. PDMS表面改質 .......................................................... 79 4.4.3.1 PDMS表面鍍金及親水處理 ............................................ 79 4.3.3.2 製備自組裝層 ...................................................... 80 4.3.3.3 聚電解質多層膜 ..................................................... 81 4.4.4. PDMS表面改質ProtrinG與Anti-EpCAM .................. 82 XIII 4.4.5. PDMS-anti-EpCAM表面blocking(BSA) ....................... 83 4.4.6. 白血球抗沾黏實驗 ..................................................... 84 4.4.6.1 血液樣品處理 ........................................................ 84 4.4.6.2 白血球接種 .......................................................... 84 4.4.6.3 白血球固定與染色 ................................................... 84 4.4.7. 雷射分析儀細胞定量檢測 ......................................... 85 4.4.7.1 細胞株HCT-116接種基材處理 ...................................... 85 4.4.7.2 細胞試片螢光染色處理 .................................................. 85 4.4.8. 病人檢體之循環腫瘤細胞偵測 ................................. 86 4.4.9. 細胞培養 .......................................................... 86 4.4.9.1 大腸癌細胞株HCT-116 ................................................... 86 4.4.9.2 大腸癌細胞株DLD-1 ..................................................... 86 4.4.9.3 子宮頸癌細胞株HeLa ................................................... 87 4.4.9.4 細胞接踵至培養基材 .................................................... 87 4.4.9.5 CCK-8 Assays (Cell Counting kit-8) .................................. 87 4.4.10. 細胞釋放 .............................................................. 88 4.4.11. 細胞試片處理 ...................................................... 88 4.4.11.1 掃描式電子顯微鏡生物試片製作 ................................ 88 5. 結果與討論 .............................................................. 89 5.1. 圖案化表面分析 ................................................. 89 5.1.1. 微影製程光阻圖案 ..................................................... 89 5.1.2. PDMS轉印圖案 .......................................................... 90 5.2. PDMS圖案化光學性質 ....................................... 92 5.2.1. 可見光繞射 ........................................................... 92 5.2.2. 雷射繞射 ............................................................. 93 5.3. PDMS表面接枝聚電解多層膜分析 .................... 95 5.3.1. Zeta potential ....................................................... 95 5.3.2. XPS光譜圖分析 .......................................................... 97 5.3.2.1 PDMS改質後之Wide Scan分析 .................................. 97 5.3.2.2 Au能譜分析 .......................................................... 99 5.3.2.3 Si2p能譜分析 ....................................................... 100 5.2.3.4 C1s能譜分析 ........................................................ 101 5.3.2.5 O1s能譜分析 ......................................................... 102 5.3.3. IR光譜............................................................... 104 5.3.4. 接觸角親疏水測試 ................................................... 105 5.3.5. 聚電解質多層膜表面分析 ....................................... 107 5.3.5.1 500nm柱狀PDMS-LbL ................................................... 108 5.3.5.2 1μm柱狀PDMS-LbL .................................................... 112 5.3.6. 聚電解質多層膜之雷射能量分析 ........................... 116 5.4. 聚電解質多層膜之層數選擇 ............................. 121 5.4.1. 不同層數造成雷射對細胞之能量損失分析 ............ 121 5.4.2. 不同層數對細胞貼附及釋放之影響........................ 126 5.5. 基材抓取細胞之測試 ........................................ 130 5.5.1. 白血球抗沾黏測試 ................................................... 130 5.5.1.1 白血球雷射分析結果 .................................................... 130 5.5.1.2 白血球螢光顯微鏡分析 ................................................ 132 5.5.2. 基材抓取不同細胞對雷射值之影響........................ 133 5.5.3. 基材對不同種類細胞之選擇性 ............................... 134 5.6. 臨床檢體之測試 ............................................... 136 5.7. 基材培養之細胞生長性測試 ............................. 141 5.8. 細胞培養 .......................................................... 145 5.8.1. 螢光成像 ............................................................ 145 5.8.2. 細胞生長曲線........................................................... 147 5.8.3. 光柵效應 ............................................................. 148 5.8.4. 雷射分析結果........................................................... 150 5.9.1. 螢光成像 ............................................................. 156 5.9.2. 光柵效應 ............................................................ 157 5.9.3. 雷射分析結果........................................................... 159 6. 結論 .................................................................... 162 參考文獻 ................................................................... 164

[1] T. Ashworth, "A case of cancer in which cells similar to those in the tumours were seen in the blood after death," Aust Med J., vol. 14, p. 146, 1869.
[2] H. J. Yoon, M. Kozminsky, and S. Nagrath, "Emerging role of nanomaterials in circulating tumor cell isolation and analysis," ACS nano, vol. 8, no. 3, pp. 1995-2017, 2014.
[3] MarenDiepenbruck,GerhardChristofori"Epithelial–mesenchymal transition (EMT) and metastasis: yes, no, maybe? "Current Opinion in Cell Biology,Vol.43, December 2016, pp.7-13
[4] Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Journal of Clinical Oncology 2008;26:3213-21.
[5] de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research 2008;14:6302-9.
[6] B. Weigelt, J. L. Peterse, and L. J. Van't Veer, "Breast cancer metastasis: markers and models," Nature reviews cancer, vol. 5, no. 8, p. 591, 2005.
[7] G. P. Gupta and J. Massagué, "Cancer metastasis: building a framework," Cell, vol. 127, no. 4, pp. 679-695, 2006.
[8] A. F. Chambers, A. C. Groom, and I. C. MacDonald, "Metastasis: dissemination and growth of cancer cells in metastatic sites," Nature Reviews Cancer, vol. 2, no. 8, p. 563, 2002.
[9] I. J. Fidler, "The pathogenesis of cancer metastasis: the'seed and soil'hypothesis revisited," Nature Reviews Cancer, vol. 3, no. 6, p. 453, 2003.
[10] J. P. Thiery, "Epithelial–mesenchymal transitions in tumour progression," Nature Reviews Cancer, vol. 2, no. 6, p. 442, 2002.
[11] H. Yamaguchi, J. Wyckoff, and J. Condeelis, "Cell migration in tumors," Current opinion in cell biology, vol. 17, no. 5, pp. 559-564, 2005.
[12] J. J. Christiansen and A. K. Rajasekaran, "Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis," Cancer research, vol. 66, no. 17, pp. 8319-8326, 2006.
[13] P. T. Went et al., "Frequent EpCam protein expression in human carcinomas," Human pathology, vol. 35, no. 1, pp. 122-128, 2004.
[14] M. Münz, C. Kieu, B. Mack, B. Schmitt, R. Zeidler, and O. Gires, "The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation," Oncogene, vol. 23, no. 34, p. 5748, 2004.
[15] Carlo Patriarca,Roberto Maria Macchi and Anja K. Marschner "Epithelial cell adhesion molecule expression (CD326) in cancer: A short review," Laboratory-Clinic interface,vol. 38,no. 1, pp68-75,2011
[16] C. A. O’Brien, A. Pollett, S. Gallinger, and J. E. Dick, "A human colon cancer cell capable of initiating tumour growth in immunodeficient mice," Nature, vol. 445, no. 7123, p. 106, 2007.
[17] M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, "Prospective identification of tumorigenic breast cancer cells," Proceedings of the National Academy of Sciences, vol. 100, no. 7, pp. 3983-3988, 2003.
[18] J. Stingl, C. J. Eaves, I. Zandieh, and J. T. Emerman, "Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue," Breast cancer research and treatment, vol. 67, no. 2, pp. 93-109, 2001.
[19] E. Schmelzer et al., "Human hepatic stem cells from fetal and postnatal donors," Journal of Experimental Medicine, vol. 204, no. 8, pp. 1973-1987, 2007.
[20] M. Trzpis et al., "Expression of EpCAM is up‐regulated during regeneration of renal epithelia," The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, vol. 216, no. 2, pp. 201-208, 2008.
[21] Muhammad Umera, Ramanathan Vaidyanathanb,and Nam-Trung Nguyena,"Circulating tumor microemboli: Progress in molecular understanding and enrichment technologies",Biotechnology Advances.Vol.36,no. 4, 2018,pp1367-1389
[22] N. J. Nelson, "Circulating tumor cells: will they be clinically useful?," ed: Oxford University Press, 2010.
[23] M. Yu, S. Stott, M. Toner, S. Maheswaran, and D. A. Haber, "Circulating tumor cells: approaches to isolation and characterization," The Journal of cell biology, vol. 192, no. 3, pp. 373-382, 2011.
[24] Sun W, Jia C, Huang T, Sheng W, Li G, Zhang H, et al. High-Performance Size-Based Microdevice for the Detection Of Circulating Tumor Cells from Peripheral Blood in Rectal Cancer Patients. PloS one 2013;8:e75865.
[25] Lianidou ES, Markou A. Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clinical chemistry 2011;57:1242-55.
[26] Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PloS one 2012;7:e33788.
[27] Stott SL, Hsu C-H, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences 2010;107:18392-7.
[28] Autebert J, Coudert B, Bidard F-C, Pierga J-Y, Descroix S, Malaquin L, et al. Fully Automates immunomagnetic Lab-on-chip for rare cancer cells sorting. Enumeration and in-situ analysis. Proc Micro Total Analysis Systems2012.
[29] Dongeun Huh1, Geraldine A. Hamilton1 and Donald E. Ingber1,2,3. From 3D cell culture to organs-on-chips. Trends in Cell Biology, 2011, Vol. 21, No. 12.
[30] Batalov I, Feinberg AW. Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture. Biomark Insights. 2015, 10(Suppl 1):71-6.
[31] Abbott A. Cell culture: biology’s new dimension. Nature,2003, 424(6951):870–2.
[32] Roskelley CD, Bissell MJ. Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function. Biochem Cell Biol, 1995, 73(7–8):391–7.
[33] Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell–matrix adhesions to the third dimension. Science 2001, 294(5547):1708–12.
[34] Y. Wan, Y.-t. Kim, N. Li, S. K. Cho, R. Bachoo, A. D. Ellington and S. M. Iqbal, Cancer Res. 2010, 70:9371.
[35] Y. Wan, M. Mahmood, N. Li, P. B. Allen, Y. t. Kim, R. Bachoo, A. D. Ellington and S. M. Iqbal, Cancer, 2012, 118:1145.
[36] Shunqiang Wang,a Yuan Wan*b,c,d and Yaling Liu*a,e. Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors†. Nanoscale, 2014, 6:12482–12489 .
[37] Jingxin Meng,Gao Yang and Lu Liu "Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity "science china chemistry,60, pp.614–620,2017
[38] H. Xiao, "半導體製程技術導論,羅正忠和張鼎張譯," ed:二版,臺灣培生教育出版,臺北市,民國九十三年, 2007.
[39] D. Ke, et al. "Wafer-Scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns". ACS applied materials & interfaces. vol. 4, pp. 5505-5514, 2010.
[40] J. Xu, et al. "Room-temperature imprinting method for plastic microchannel fabrication". Analytical Chemistry. vol.72, pp. 1930-1933, 2000.
[41] W.C. Bigelow, D.L. Pickett, W.A. Zisman, "Film adsorbed from solotion in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946.
[42] R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, vol. 105, pp. 4481-4483, 1983.
[43] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society, vol. 113, pp. 7152-7167, 1991.
[44] D. G. a. S. M. Husson, "Room Temperature Growth of Surface-Confined Poly(acrylamide) from Self-Assembled Monolayers Using Atom Transfer Radical Polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
[45] B. M. E. Delamarche, H. Kang, and Ch. Gerber, "Thermal Stability of Self-Assembled Monolayers," Langmuir, vol. 10, pp. 4103-4108, 1994.
[46] J. A. H. a. J. P. Youngblood, "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
[47] SIMON, A., et al. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface. Journal of colloid and interface science, 2002, 251.2: 278-283.
[48] Dafna Knani,Maytal Foox,andMeital Zilberman. "Simulation of the bioadhesive gelatin‐alginate conjugate loaded with antibiotic drugs " Polymers advanced technologies,vol30,no3,pp519-518.
[49] Adam Hatch,Georg Hansmann, and Shashi K. Murthy "Engineered Alginate Hydrogels for Effective Microfluidic Capture and Release of Endothelial Progenitor Cells from Whole Blood "Langmuir 2011, 27, 7, pp4257–4264
[50] F. Costantini, et al. "Enzyme-functionalized polymer brush films on the inner wall of silicon–glass microreactors with tunable biocatalytic activity". Lab on a Chip, vol.10, pp. 3407-3412, 2010.
[51] Joseph J. Richardson et al. Technology-driven layer-by-layer assembly of nanofilms. Science 348, 2015, 10.1126 /science.aaa2491
[52] S. T. Dubas, J. B. Schlenoff. "Factors controlling the growth ofpolyelectrolyte multilayers".Macromolecules, 1999, 32.pp8153–8160.
[53] I. M. Thomas. " Single-layer TiO2 and multilayer TiO2-SiO2 optical coatings prepared from colloidal suspensions."Appl. Opt, 1987, 26.pp 4688–4691.
[54] J. B. Schlenoff, S. T. Dubas, T. Farhat. "Sprayed polyelectrolyte multilayers. " Langmuir, 2000, 16.pp 9968–9969.
[55] A. Izquierdo, S. S. Ono, J.-C. Voegel, P. Schaaf, G. Decher. " Dipping versus spraying: Exploring the deposition conditions for speeding up layer-by-layer assembly. " Langmuir, 2005, 21.pp 7558–7567.
[56] J. Sun, M. Gao, J. Feldmann. "Electric field directed layer-by-layer assembly of highly fluorescent CdTe nanoparticles."J. Nanosci. Nanotechnol, 2001,1.pp 133–136.
[57] X. Hong et al."Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. "Chem. Mater, 2004, 16.pp 4022–4027.
[58] Y. Wang et al."Coupling electrodeposition with layer-by-layer assembly to address proteins within microfluidic channels."Adv. Mater, 2011, 23,pp 5817–5821.
[59] N. Raman, M.-R. Lee, S. P. Palecek, D. M. Lynn."Polymer multilayers loaded with antifungal b-peptides kill planktonic Candida albicans and reduce formation of fungal biofilms on the surfaces of flexible catheter tubes. " J. Control. Release, 2014,191,pp 54–62.
[60] N. Madaboosi et al. "Microfluidics as a tool to understand the build-up mechanism of exponential-like growing films."Macromol. Rapid Commun, 2012, 33,pp 1775–1779.
[61] Bin Ding,Kouji Fujimoto,and SeimeiShiratoriab"Preparation and characterization of self-assembled polyelectrolyte multilayered films on electrospun nanofibers. "Thin Solid Films,2005, 491,pp 23–28.
[62] Elbakry, A., Zaky, A., Liebkl, R., Rachel, R., Goepferich, A., & Breunig, M. "Layer by-layer assembled gold nanoparticles for siRNA delivery. " Nano Letters,2009, 9,pp 2059–2064.
[63] Decher,G."Fuzzy nanoassemblies: Toward layered polymeric multicomposites. "Science, 1997, 277,pp 1232–1237.
[64] Laurent.D.,Schlenoff,J.B."Multilayer assemblies of redox polyelectrolytes. "Langmuir, 1997, 13,pp 1552–1557.
[65] Lee, S. H., Kumar, J., and Tripathy, S. K. "Thin film optical sensors employing polyelectrolyte assembly. "Langmuir, 2000, 16,pp 10482–10489.
[66] Ogawa, T., Ding, B., Sone, Y.,and Shiratori, S. "Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes."Nanotechnology, 2007,vol.18,no.16.
[67] Kokubo, H., Ding, B., Naka, T., Tsuchihira, H., and Shiratori, S. "Multi-core cablelike TiO2 nanofibrous membranes for dye-sensitized solar cells. " Nanotechnology, 2007, 18.
[68] Tang, Z. Y.,Wang, Y. ,Podsiadlo, P. Kotov, N. A. "Biomedical applications of layer‐by‐layer assembly: from biomimetics to tissue engineering." Advanced materials, 2006, 18: 3203−3224.
[69] Boudou, T.; Crouzier, T.; Ren, K.; Blin, G.; Picart, C. Adv. Mater. 2010, 22:441−467.
[70] Delcea, M.; Mohwald, H.; Skirtach, A. G. Adv. Drug Delivery Rev.2011, 63:730−747.
[71] Lilia Shapiro, Smadar Cohen. Novel alginate sponges for cell culture and transplantation. Biomaterials, 1997, 18:583-590
[72] Smidsrod, O. Faraday Discuss. Chem. Soc, 1974, 57:263-274.
[73] Smidsrod, O., Haug, A. and Lian, B. Acta Chem. Scand, 1972, 26: 71-78
[74] de Vos, P., Faas, M. M., Strand, B., & Calafiore, R."Alginate-based microcapsules for immunoisolation of pancreatic islets." Biomaterials, 2006, 27:5603–5617.
[75] Lu, J. W., Zhu, Y. L., Guo, Z. X., Hu, P., & Yu, J. "Electrospinning of sodium alginate with poly(ethylene oxide). " Polymer, 2006, 47, 8026–8031.
[76] Sennerby, L., Rostiund, T., Albrektsson, B.,and Albrektsson, T." Acute tissue reactions to potassium alginate with and without colour/flavour additives."Biomaterials, 1987, 8:49–52.
[77] Michaels AS, Morelos O."Polyelectrolyte adsorption by kaolinite. " Ind Eng Chem. 1955;47:1801–1809.
[78] Wiśniewska M, Chibowski S."Influences of temperature and purity of polyacrylic acid on its adsorption and surface structures at ZrO2-polymer solution interface. " Adsorpt Sci Technol. 2005;23:655–667.
[79] Uiyoung Han,Younghye Seo, and Jinkee Honga, "Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and graphene oxide" Scientific, 2016; 6: 24158.
[80] Suh.J,Paik H-J,and Hwang B.K."Ionization of Poly(ethylenimine) and Poly(allylamine) at Various pH’s",Bioorganic Chemistry,vol 22, Issue 3, September 1994, Pages 318-327
[81] Jiajia Wang, Yuhua Ma, Shun Feng & Jide Wang." High-salt-tolerance anticorrosion coating with salt-enabled self-healing ability from branched polyethyleneimine and poly(acrylic acid)"Journal of Coatings Technology and Research,2019,vol.16, pp827–834
[82] D.A.L. Vickers, M. Hincapie, W.S. Hancock, S.K. Murthy, "Lectin-mediated microfluidic capture and release of leukemic lymphocytes from whole blood, Biomed." Microdevices, 2011, 13: 565-571.
[83] M. Xie, J. Hu, Y.M. Long, Z.L. Zhang, H.Y. Xie, D.W. Pang, "Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates, "Biosens. Bioelectron, 2009, 24:1311-1317.
[84] T. Zheng, H.M. Yu, C.M. Alexander, D.J. Beebe, L.M. Smith, "Lectin-modified microchannels for mammalian cell capture and purification, " Biomed. Microdevices, 2007, 9:611-617.
[85] L. Chen, X.L. Liu, B. Su, J. Li, L. Jiang, D. Han, et al., "Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces,"Adv. Mater, 2011, 23:4376.
[86] Q.L. Shen, L. Xu, L.B. Zhao, D.X. Wu, Y.S. Fan, Y.L. Zhou, et al., "Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates,"Adv. Mater. 2013, 25:2368-2373.
[87] W.A. Zhao, C.H. Cui, S. Bose, D.G. Guo, C. Shen, W.P. Wong, et al., "Bioinspired multivalent DNA network for capture and release of cells, Proc."Natl. Acad. Sci. U. S. A. 2012, 109:19626-19631.
[88] D.S. Shin, J.H. Seo, J.L. Sutcliffe, A. Revzin, "Photolabile micropatterned surfaces for cell capture and release, Chem." Commun. 2011, 47:11942-11944.
[89] P.F. Wang, H.Y. Hu, Y. Wang,"Novel photolabile protecting group for carbonyl compounds,"Org. Lett. 2007, 9:1533-1535.
[90] T. Sada, T. Fujigaya, Y. Niidome, K. Nakazawa, N. Nakashima, "Near-IR lasertriggered target cell collection using a carbon nanotube based cell-cultured substrate, "ACS Nano. 2011, 5:4414-4421.
[91] H.J. Yoon, M. Kozminsky, S. Nagrath, "Emerging role of nanomaterials in circulating tumor cell isolation and analysis, " ACS Nano, 2014, 8:1995-2017.
[92] R.J. Colinas, A.C. "Walsh, Cell separation based on the reversible interaction between calmodulin and a calmodulin-binding peptide, " J. Immunol. Methods, 1998, 212:69-78.
[93] C.Alix-Panabieres,K.Pantel,"Technologies for detection of circulating tumor cells: facts and vision, " Lab Chip, 2014, 14:57-62.
[94] Q. Zheng, S.M. Iqbal, Y. Wan, "Cell detachment: post-isolation challenges,Biotechnol."Adv.2013, 31:1664-1675.
[95] C. Born, Z. Zhang, M. Alrubeai, C.R. Thomas, "Estimation of disruption of animal-cells by laminar shear-stress, Biotechnol." Bioeng. 1992, 40:1004-1010.
[96] Wei Li,Eduardo Re_ategui,and Myoung-Hwan Park. " Biodegradable nano-films for capture and non-invasive release of circulating tumor cells. "Biomaterials 2015, 65: 93-102.

無法下載圖示 全文公開日期 2025/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE