簡易檢索 / 詳目顯示

研究生: Mulatu Kassie Birhanu
Mulatu Kassie Birhanu
論文名稱: 調控雙金屬奈米觸媒組成和結構性質於二氧化碳還原反應之研究
Electrocatalytic Reduction of Carbon Dioxide Using Supported Bimetallic Electrocatalysts by Tuning the Composition and Structural Properties of Metal Nanoparticles
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Chou Tse-Chuan
鄧熙聖
Hsisheng Teng
林昇佃
Shawn D. Lin
黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 205
中文關鍵詞: 合金化程度表面組成協同效應中間物還原雙原子奈米粒子選擇性封端劑
外文關鍵詞: Alloying Extent, Surface Composition, Synergistic effect, Reduction Intermediate, Bimetallic Nanoparticles, Selectivity, Capping Agent
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著工業發展,車輛及工廠的二氧化碳排放量增加,而二氧化碳與氯氟烴(CFCs)、甲烷、臭氧、一氧化二氮皆為全球暖化原因。全球暖化所引發極地冰山融化、大氣升溫、人體健康成為日後研究發展方向,目前有許多二氧化碳減排方式,其中CO2的電化學還原(ECR)是這領域熱門研究之一。

於本篇研究中為探討關於雙金屬(銅基)的表徵及CO2電化學還原原理和反應機構對於產物生產效率和選擇性有顯著影響,在研究後段附有影響原因及相關補充資訊。文章重點主要在討論銅和銅基觸媒的催化活性以及優缺點比較,反應機制主要由單金屬銅觸媒和特定銅雙金屬合金觸媒在特定電解液、電位中分析產物濃度及法拉第效率和密度泛函理論(DFT)加以分析研究。在文獻回顧部分有對銅雙金屬合金觸媒的電化學還原機制及對於CO2還原產物生成加以討論,並開發具未來展望的雙金屬觸媒方式。在第一個實驗研究方法中,製備了Au/Cu雙金屬觸媒和單金屬奈米粒子觸媒應用於CO2電化學還原(ECR),並將觸媒與載體多壁奈米碳管(MWCNT)偶聯,能夠增強催化劑的導電性、電子轉移、催化活性和穩定性。而將金屬奈米粒子(NP)分散在親水性碳纖維紙上,目的是調整雙金屬和單金屬奈米粒子的電子結構和表面組成,透過調整表面與CO2間作用力來控制反應中間物。Au和Cu金屬之間的協同效應和合金化程度與MWCNT偶聯是增強活性和選擇性的主要關鍵,相對於RHE中低於-1.0V的電位下可達到接近70-80mA / cm 2的電流,而除了其它微量還原產物之外,在雙金屬觸媒上表現出約~78%的CO選擇性。通常情況下起始電位低於其他金屬電催化劑,表示法拉第效率和活性顯著增強。

第二項實驗中,使用Au/Cu奈米粒子(NPs)雙金屬電催化劑,依然用於CO2電化學還原(ECR)。將NPs沉積在功能化碳納米管(CNT)載體上,用於增加電流密度穩定性和導電性。製備方法則是與封端劑聚乙烯吡咯烷酮(PVP)混合,可提高還原產物活性和選擇性,原因為PVP可以調節電子結構間協同效應,包含金屬原子的結構性質,可抑制顆粒過度生長並防止NP聚集,這種由PVP控制AuCu顆粒尺寸的顯著降低和原子分散特性,結果提高了還原過程的催化速率及選擇性。最後藉由XAS分析研究PVP在NPs分散中的作用,通過在雙金屬表面上量測Au(111)和Cu(111)對PVP的吸附能,透過計算證明PVP的作用,將計算結果與不含PVP的雙金屬相比,使用PVP製備的電催化劑具有更好的活性和選擇性。相對於RHE -0.91 V下,AuCu / CNT(1.5g PVP)的CO產物法拉第效率(FE%)約為88%,但是在沒有PVP情況下約為~71%,結果表示含有PVP作用下可將FE%提高24%,並且與使用相同量的PVP單金屬電催化劑相比,雙金屬合金觸媒表現出更高活性和選擇性。

在另一項改質實驗中,我們合成出Au/Cu雙金屬NP並將其負載在TiO 2-C複合材料上,透過TiO 2和金屬NP之間的電子轉移可使得觸媒與載體間的偶聯增強,並且能夠在CO2電化學還原期間增加電催化劑的穩定性,而碳的作用則是增加電催化劑的電導率和表面積,以提高電催化還原CO 2的總反應活性。材料分析則是透過XRD、XAS、XPS、SEM、EDS等等量測儀器進行確認電催化劑和載體材料間表徵和可用性,最後使用電化學方式來測試還原活性,其中包括使用氣相色譜法(GC)與電化學圖譜分析還原產。


Emissions of CO2 from various types of industries, power plants, vehicles and many other factories are increasing and becomes one of the causes of global warming together with chlorofluorocarbons (CFCs), methane, ozone, nitrous oxide and others. Global warming provokes melting of polar ice, the increment of atmospheric temperature, expansion of dissertation and impact of human health. Even though there are different techniques for mitigation of CO2, electrochemical reduction (ECR) of CO2 is the interesting field of study for this work.

In the literature part of the thesis, basic ideas about characterizations of bimetallic (Cu-based), principles and mechanisms of electrochemical reduction of CO2 and descriptions to major and supplementary factors that significantly affect the reduction efficiency and selectivity of products are compiled coherently. The catalytic capability of Cu and Cu-based electrocatalysts and the advantages gained from Cu alloy over its monometallic are compared and discussed. The proposed reduction mechanisms, which are studied by several researchers based on experimental and density functional theory (DFT) approaches are compiled and analyzed. Reduction products and the corresponding faradaic efficiency using Cu monometallic and Cu-M bimetallic are identified at specific potential and concentration of electrolyte solutions. The literature part of this thesis addresses, understands of electrochemical reduction mechanisms and products of CO2 on Cu-based bimetallic catalysts and also provides an outlook for designing better bimetallic catalysts to obtain demanded products. Therefore, prior to the experimental work, this thesis provides an outlook for designing better bimetallic electrocatalysts to obtain selective products through ECR of CO2.

In the first experimental research approach, bimetallic and monometallic nanoparticles of Au and Cu are prepared for the electrochemical reduction (ECR) of CO2. Each electrocatalyst is supported and coupled with multi-walled carbon nanotubes (MWCNT), which able to enhance the conductivity, electron transfer, activity and the stability of the electrocatalyst. The supported metal nanoparticles (NPs) are loaded and dispersed on hydrophilic carbon fiber paper. The goal of this work is tuning the electronic structure and the surface composition of bimetallic and monometallic nanoparticles, which naturally manipulates the interaction between active sites and intermediate species of CO2. The synergistic effect between Au and Cu alloys and alloying extent with the coupling of MWCNT are the major contributions for enhanced activity and selectivity. Nearly 70-80 mA/cm2 of current was reached at a potential below -1.0 V vs. RHE and approximately up to ~78% of CO selectivity was obtained on the bimetallic composition in addition to other minor reduction products. Generally, faradaic efficiency and activity are significantly enhanced and the onset potential is comparatively lower than that of other metal electrocatalysts.

In the second work, bimetallic electrocatalysts of Au and Cu nanoparticles (NPs) are synthesized for electrochemical reduction (ECR) of CO2. The NPs are supported on a functionalized carbon nanotubes (CNT) to increase the stability and conductivity that resulted in high current density. To enhance the activity and selectivity of the reduction products, the preparation process was incorporated with capping agent i.e. Polyvinylpyrrolidone (PVP). Consequently, PVP can tune the synergistic (electronic and geometric) effects including the structural properties of the atoms, inhibit particle overgrowth and prevent the aggregation of NPs due to its steric hindrance effect. This scenario of varying the structural properties like a significant decrease of particle size and atomic distribution of AuCu are manipulated by PVP and results enhanced catalytic rate and selectivity of the reduction process. The role of PVP on the distribution of NPs have been investigated by XAS analysis and proved using computational calculations through the determination of adsorption energy of PVP with Au (111) and Cu (111) on the bimetallic surface. The electrocatalyst prepared with PVP has better activity and selectivity compared to the bimetallic synthesized without PVP. At -0.91 V vs. RHE the faradaic efficiency (FE%) of AuCu/CNT (1.5g PVP) is around 88% towards the formation of CO, but in the absence of PVP resulted in ~71%, indicates the existence of PVP increase the FE% by 24%. Bimetallic composition showed better activity and selectivity compared with its monometallic electrocatalyst using the same amount of PVP.

In the other alternative work, bimetallic NPs of Au and Cu are synthesized, which is supported on TiO2-C composites. The electron transfers between TiO2 and metal NPs makes the coupling between the catalyst and supporting material strong and able to enhance the stability of the electrocatalyst during ECR of CO2. The role of carbon is to increase the conductivity and surface area of the electrocatalyst and led to enhance the overall activity of the electrocatalytic reduction of CO2. Characterization of electrocatalysts and supporting materials are performed by XRD, XAS, XPS, SEM, EDS and using other characterization tools to confirm their property and its availability. The performance of the reduction activity has been performed by electrochemical test including determination of reduction products using gas chromatography hyphenated with electrochemical analysis.

Page 中文摘要 i Abstract iii ACKNOWLEDGMENT vi TABLE OF CONTENTS viii LIST OF FIGURES xi LIST OF SCHEMES xvii LIST OF TABLES xviii NOMENCLATURE xix ABBREVIATIONS xx INTRODUCTION 1 1.1. Background 1 1.2. Concise Overviews of Electrochemical Reduction of CO2 4 1.3. Challenges of Electrochemical Reduction of CO2 8 2. PRINCIPLES AND REDUCTION MECHANISMS OF ELECTROCHEMICAL REDUCTION OF CO2 11 2.1. Fundamental Parameters of ECR of CO2 11 2.2. Intrinsic Factors and Role of Active sites of Electrocatalysts in ECR of CO2 14 2.2.1. Electrochemical Surface Area (ECSA) 17 2.2.2. Structure of catalyst surface 17 2.2.3. Size of Nanocatalysts 23 2.3. Extrinsic/External Factors of ECR of CO2 32 2.3.1. Electrolyte Solution 32 2.3.2. Configuration of Electrochemical Cell 43 2.4. Reduction Mechanisms and Selected Products of ECR of CO2 in Cu Based Bimetallic 46 2.4.1. General Reduction Mechanisms of CO2 47 2.4.2. Reduction Steps in the Formation of Main Products 51 2.6. Outlooks and Summary of Literature in ECR of CO2 63 2.7. Objectives and Motivation of the Study 66 2.7.1. Objectives 66 2.7.2. Motivation of the Study and Thesis Outline 67 3. EXPERIMENTAL AND CHARACTERIZATION SECTION 69 3.1. General Experimental Section 69 3.2. Preparation of AuCu Nanoparticles Supported by Carbon Nanotubes 71 3.3. Electrochemical Analysis in Reduction of CO2 72 3.5. Preparation of Capping Agent Incorporated and Supported electrocatalyst 75 3.6. Characterization of AuCu bimetallic and Electrochemical Measurements 76 3.7. Preparation of TiO2/C powder 77 3.8. Characterization of Electrocatalyst and Electrochemical Performance Test 79 4. ENHANCED ELECTROCATALYTIC REDUCTION OF CARBON DIOXIDE USING COPPER AND GOLD ALLOY NANOPARTICLES SUPPORTED BY CARBON NANOTUBES 79 4.1. Introduction 79 4.2. Results and Discussion 81 4.2.1. Characterization of Electrocatalysts 81 4.2.2. Characterization of Electrocatalysts Using XAS 86 4.2.3. Estimation of Alloying Extent 92 4.2.4. Performance of Electrochemical Reduction of CO2 95 4.2.5. Determination and Discussions of Reduction Products 100 4.3. Summary 108 5. SELECTIVE ELECTROCATALYTIC REDUCTION OF CARBON DIOXIDE BY TUNING THE STRUCTURAL PROPERTIES OF CARBON NANOTUBE SUPPORTED BIMETALLIC ELECTROCATALYST 110 5.1. Introduction 110 5.2. Results and Discussion 111 5.2.1. Results of Characterized Electrocatalyst 111 5.2.2. Evaluating Alloying Extent of Au and Cu 122 5.2.3. Electrochemical Analysis in CO2 Reduction 125 5.2.4. Discussions to ECR of CO2 and Determination of Reduction Products 128 5.3. Summary 131 6. ELECTROCATALYTIC REDUCTION OF CARBON DIOXIDE USING GOLD AND COPPER BIMETALLIC SUPPORTED BY TITANIUM DIOXIDE AND ACTIVATED BY CARBON 133 6.2. Introduction 133 6.3. Results and Discussion 135 6.3.3. Characterization of Electrocatalyst 135 6.3.4. Electrochemical Analysis and Discussions 140 6.4. Summary 142 7. CONCLUSION AND PERSPECTIVES 143 REFERENCE 147 APPENDIX A: Supporting Data for Chapter 4 171 APPENDIX B: Supporting Data for Chapter 5 173 CURRICULUM VITAE (CV) OF THE AUTHOR 175

1. Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B., Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3 (4), 560-587.
2. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P., Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nature communications 2014, 5, 4948.
3. Li, M.; Wang, J.; Li, P.; Chang, K.; Li, C.; Wang, T.; Jiang, B.; Zhang, H.; Liu, H.; Yamauchi, Y., Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO 2 to CO. Journal of Materials Chemistry A 2016, 4 (13), 4776-4782.
4. Choi, S. Y.; Jeong, S. K.; Kim, H. J.; Baek, I.-H.; Park, K. T., Electrochemical reduction of carbon dioxide to formate on tin–lead alloys. ACS Sustainable Chemistry & Engineering 2016, 4 (3), 1311-1318.
5. Watanabe, M.; Shibata, M.; Kato, A.; Azuma, M.; Sakata, T., Design of Alloy Electrocatalysts for CO 2 Reduction III. The Selective and Reversible Reduction of on Cu Alloy Electrodes. Journal of the Electrochemical Society 1991, 138 (11), 3382-3389.
6. Itkulova, S. S.; Zhunusova, K.; Zakumbaeva, G., CO2 reforming of CH4 over bimetallic supported catalysts. Applied Organometallic Chemistry 2000, 14 (12), 850-852.
7. Ishimaru, S.; Shiratsuchi, R.; Nogami, G., Pulsed Electroreduction of CO 2 on Cu‐Ag Alloy Electrodes. Journal of the Electrochemical Society 2000, 147 (5), 1864-1867.
8. Shiratsuchf, R.; Ishimaru, S.; Nogami, G., Influence of anions on the production efficiency in pulsed electroreduction of CO2 on metal and alloy electrodes. In Studies in Surface Science and Catalysis, Elsevier: 1998; Vol. 114, pp 573-576.
9. Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F., A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications 2014, 5, 3242.
10. Schrebler, R.; Cury, P.; Suarez, C.; Munoz, E.; Gomez, H.; Cordova, R., Study of the electrochemical reduction of CO2 on a polypyrrole electrode modified by rhenium and copper–rhenium microalloy in methanol media. Journal of Electroanalytical Chemistry 2002, 533 (1-2), 167-175.
11. Lebedeva, N.; Rosca, V.; Janssen, G., CO oxidation and CO2 reduction on carbon supported PtWO3 catalyst. Electrochimica Acta 2010, 55 (26), 7659-7668.
12. Chen, L.; Bock, C.; Mercier, P.; MacDougall, B., Ordered alloy formation for Pt3Fe/C, PtFe/C and Pt5. 75Fe5. 75Cuy/CO2-reduction electro-catalysts. Electrochimica Acta 2012, 77, 212-224.
13. Jia, F.; Yu, X.; Zhang, L., Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. Journal of Power Sources 2014, 252, 85-89.
14. Shen, F.-x.; Shi, J.; Chen, T.-y.; Shi, F.; Li, Q.-y.; Zhen, J.-z.; Li, Y.-f.; Dai, Y.-n.; Yang, B.; Qu, T., Electrochemical reduction of CO 2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate. Journal of Power Sources 2018, 378, 555-561.
15. Szumełda, T.; Drelinkiewicz, A.; Lalik, E.; Kosydar, R.; Duraczyńska, D.; Gurgul, J., Carbon-supported Pd100-XAuX alloy nanoparticles for the electrocatalytic oxidation of formic acid: Influence of metal particles composition on activity enhancement. Applied Catalysis B: Environmental 2018, 221, 393-405.
16. Birhanu, M. K.; Tsai, M.-C.; Kahsay, A. W.; Chen, C.-T.; Zeleke, T. S.; Ibrahim, K. B.; Huang, C.-J.; Su, W.-N.; Hwang, B.-J., Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction. Advanced Materials Interfaces 2018, 0 (0), 1800919.
17. Zhu, D. D.; Liu, J. L.; Qiao, S. Z., Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Advanced materials 2016, 28 (18), 3423-3452.
18. Zhao, S.; Jin, R.; Jin, R., Opportunities and Challenges in CO2 Reduction by Gold-and Silver-Based Electrocatalysts: From Bulk Metals to Nanoparticles and Atomically Precise Nanoclusters. ACS Energy Letters 2018, 3 (2), 452-462.
19. He, J.; Johnson, N. J.; Huang, A.; Berlinguette, C. P., Electrocatalytic Alloys for CO2 Reduction. ChemSusChem 2018, 11 (1), 48-57.
20. Zhang, L.; Zhao, Z. J.; Gong, J., Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angewandte Chemie International Edition 2017, 56 (38), 11326-11353.
21. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T., Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. The journal of physical chemistry letters 2015, 6 (20), 4073-4082.
22. Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y.-W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nature communications 2016, 7, 12123.
23. Lee, S.; Kim, D.; Lee, J., Electrocatalytic production of C3‐C4 Compounds by conversion of CO2 on a chloride‐induced bi‐phasic Cu2O‐Cu catalyst. Angewandte Chemie International Edition 2015, 54 (49), 14701-14705.
24. Hong, X.; Chan, K.; Tsai, C.; Nørskov, J. K., How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catalysis 2016, 6 (7), 4428-4437.
25. Li, Y.; Sun, Q., Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Advanced Energy Materials 2016, 6 (17), 1600463.
26. Gong, J.; Zhang, L.; Zhao, Z.-J., Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and Related Reaction Mechanisms. Angewandte Chemie 2017.
27. Udupa, K.; Subramanian, G.; Udupa, H., The electrolytic reduction of carbon dioxide to formic acid. Electrochimica Acta 1971, 16 (9), 1593-1598.
28. Ryu, J.; Andersen, T.; Eyring, H., Electrode reduction kinetics of carbon dioxide in aqueous solution. The Journal of Physical Chemistry 1972, 76 (22), 3278-3286.
29. Paik, W.; Andersen, T.; Eyring, H., Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode. Electrochimica Acta 1969, 14 (12), 1217-1232.
30. Gennaro, A.; Isse, A. A.; Savéant, J.-M.; Severin, M.-G.; Vianello, E., Homogeneous electron transfer catalysis of the electrochemical reduction of carbon dioxide. Do aromatic anion radicals react in an outer-sphere manner? Journal of the American Chemical Society 1996, 118 (30), 7190-7196.
31. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science 2010, 3 (9), 1311-1315.
32. Schouten, K.; Kwon, Y.; Van der Ham, C.; Qin, Z.; Koper, M., A new mechanism for the selectivity to C 1 and C 2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chemical Science 2011, 2 (10), 1902-1909.
33. Ma, S.; Kenis, P. J., Electrochemical conversion of CO 2 to useful chemicals: current status, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering 2013, 2 (2), 191-199.
34. Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catalysis 2015, 5 (5), 2814-2821.
35. Hashiba, H.; Weng, L.-C.; Chen, Y.; Sato, H. K.; Yotsuhashi, S.; Xiang, C.; Weber, A. Z., Effects of Electrolyte Buffer Capacity on Surface Reactant Species and the Reaction Rate of CO2 in Electrochemical CO2 Reduction. The Journal of Physical Chemistry C 2018, 122 (7), 3719-3726.
36. Singh, M. R.; Clark, E. L.; Bell, A. T., Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Physical Chemistry Chemical Physics 2015, 17 (29), 18924-18936.
37. Endrődi, B.; Bencsik, G.; Darvas, F.; Jones, R.; Rajeshwar, K.; Janáky, C., Continuous-flow electroreduction of carbon dioxide. Progress in Energy and Combustion Science 2017, 62, 133-154.
38. Keerthiga, G.; Chetty, R., Electrochemical reduction of carbon dioxide on zinc-modified copper electrodes. Journal of The Electrochemical Society 2017, 164 (4), H164-H169.
39. Hirunsit, P.; Soodsawang, W.; Limtrakul, J., CO2 Electrochemical Reduction to Methane and Methanol on Copper-Based Alloys: Theoretical Insight. The Journal of Physical Chemistry C 2015, 119 (15), 8238-8249.
40. Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P., Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. Journal of the American Chemical Society 2014, 136 (38), 13319-13325.
41. Zhu, D. D.; Liu, J. L.; Qiao, S. Z., Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Advanced materials 2016, 28 (18), 3423-52.
42. Song, Y.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L.; Wu, Z.; Meyer, H. M.; Chi, M.; Ma, C.; Sumpter, B. G.; Rondinone, A. J., High-Selectivity Electrochemical Conversion of CO2to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode. ChemistrySelect 2016, 1 (19), 6055-6061.
43. Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, X.-F.; Ma, Q.; Brudvig, G. W.; Batista, V. S., Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature Communications 2018, 9 (1), 415.
44. Yang, H. B.; Hung, S.-F.; Liu, S.; Yuan, K.; Miao, S.; Zhang, L.; Huang, X.; Wang, H.-Y.; Cai, W.; Chen, R., Atomically dispersed Ni (i) as the active site for electrochemical CO 2 reduction. Nature Energy 2018, 3 (2), 140.
45. Liu, J., Catalysis by supported single metal atoms. ACS Catalysis 2016, 7 (1), 34-59.
46. Zhao, C.; Dai, X.; Yao, T.; Chen, W.; Wang, X.; Wang, J.; Yang, J.; Wei, S.; Wu, Y.; Li, Y., Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2. Journal of the American Chemical Society 2017, 139 (24), 8078-8081.
47. Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P., Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9 (12), 12496-12505.
48. Marepally, B. C.; Ampelli, C.; Genovese, C.; Tavella, F.; Veyre, L.; Quadrelli, E. A.; Perathoner, S.; Centi, G., Role of small Cu nanoparticles in the behaviour of nanocarbon-based electrodes for the electrocatalytic reduction of CO 2. Journal of CO2 Utilization 2017, 21, 534-542.
49. Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C., Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016.
50. Wang, Z.; Yang, G.; Zhang, Z.; Jin, M.; Yin, Y., Selectivity on etching: Creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano 2016, 10 (4), 4559-4564.
51. Villa, A.; Dimitratos, N.; Chan-Thaw, C. E.; Hammond, C.; Veith, G. M.; Wang, D.; Manzoli, M.; Prati, L.; Hutchings, G. J., Characterisation of gold catalysts. Chemical Society Reviews 2016, 45 (18), 4953-4994.
52. Kim, D.; Xie, C.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P., Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. Journal of the American Chemical Society 2017, 139 (24), 8329-8336.
53. Hori, Y.; Murata, A.; Takahashi, R., Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1989, 85 (8), 2309-2326.
54. Karaiskakis, A. N.; Biddinger, E. J., Evaluation of the Impact of Surface Reconstruction on Rough Electrodeposited Copper‐Based Catalysts for Carbon Dioxide Electroreduction. Energy Technology 2017, 5 (6), 901-910.
55. Takahashi, I.; Koga, O.; Hoshi, N.; Hori, Y., Electrochemical reduction of CO2 at copper single crystal Cu (S)-[n (111)×(111)] and Cu (S)-[n (110)×(100)] electrodes. Journal of Electroanalytical Chemistry 2002, 533 (1-2), 135-143.
56. Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Nørskov, J. K.; Chorkendorff, I., The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Physical Chemistry Chemical Physics 2012, 14 (1), 76-81.
57. Prakash, G. S.; Viva, F. A.; Olah, G. A., Electrochemical reduction of CO 2 over Sn-Nafion® coated electrode for a fuel-cell-like device. Journal of Power Sources 2013, 223, 68-73.
58. Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N., Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. Journal of Molecular Catalysis A: Chemical 2003, 199 (1), 39-47.
59. Qiao, J.; Jiang, P.; Liu, J.; Zhang, J., Formation of Cu nanostructured electrode surfaces by an annealing–electroreduction procedure to achieve high-efficiency CO 2 electroreduction. Electrochemistry Communications 2014, 38, 8-11.
60. Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T.; Mul, G.; Baltrusaitis, J., Electrochemical CO 2 reduction on Cu 2 O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Physical Chemistry Chemical Physics 2014, 16 (24), 12194-12201.
61. Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P., Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. Journal of the American Chemical Society 2014, 136 (19), 6978-6986.
62. Chen, C. S.; Handoko, A. D.; Wan, J. H.; Ma, L.; Ren, D.; Yeo, B. S., Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catalysis Science & Technology 2015, 5 (1), 161-168.
63. Peterson, A. A.; Nørskov, J. K., Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. The Journal of Physical Chemistry Letters 2012, 3 (2), 251-258.
64. Fan, M.; Bai, Z.; Zhang, Q.; Ma, C.; Zhou, X.-D.; Qiao, J., Aqueous CO 2 reduction on morphology controlled Cu x O nanocatalysts at low overpotential. RSC Advances 2014, 4 (84), 44583-44591.
65. Tan, Y.; Xue, X.; Peng, Q.; Zhao, H.; Wang, T.; Li, Y., Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Letters 2007, 7 (12), 3723-3728.
66. Liu, Z.; Yang, Y.; Liang, J.; Hu, Z.; Li, S.; Peng, S.; Qian, Y., Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. The Journal of Physical Chemistry B 2003, 107 (46), 12658-12661.
67. Jiao, Y.; Wang, F.; Ma, X.; Tang, Q.; Wang, K.; Guo, Y.; Yang, L., Facile one-step synthesis of porous ceria hollow nanospheres for low temperature CO oxidation. Microporous and Mesoporous Materials 2013, 176, 1-7.
68. Lokhande, C.; Dubal, D.; Joo, O.-S., Metal oxide thin film based supercapacitors. Current Applied Physics 2011, 11 (3), 255-270.
69. Dutta, A.; Rahaman, M.; Mohos, M.; Zanetti, A.; Broekmann, P., Electrochemical CO2 conversion using skeleton (sponge) type of Cu catalysts. ACS Catalysis 2017, 7 (8), 5431-5437.
70. Shah, A. B.; Sivapalan, S. T.; DeVetter, B. M.; Yang, T. K.; Wen, J.; Bhargava, R.; Murphy, C. J.; Zuo, J.-M., High-index facets in gold nanocrystals elucidated by coherent electron diffraction. Nano Lett 2013, 13 (4), 1840-1846.
71. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E., Shape‐controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition 2009, 48 (1), 60-103.
72. Tao, A. R.; Habas, S.; Yang, P., Shape control of colloidal metal nanocrystals. Small 2008, 4 (3), 310-325.
73. Skriver, H. L.; Rosengaard, N., Surface energy and work function of elemental metals. Physical Review B 1992, 46 (11), 7157.
74. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental 2005, 56 (1-2), 9-35.
75. Mukerjee, S., Particle size and structural effects in platinum electrocatalysis. Journal of Applied Electrochemistry 1990, 20 (4), 537-548.
76. Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X., Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. Journal of the American Chemical Society 2015, 137 (13), 4288-4291.
77. Li, L.; Larsen, A. H.; Romero, N. A.; Morozov, V. A.; Glinsvad, C.; Abild-Pedersen, F.; Greeley, J.; Jacobsen, K. W.; Nørskov, J. K., Investigation of catalytic finite-size-effects of platinum metal clusters. The Journal of Physical Chemistry Letters 2012, 4 (1), 222-226.
78. Kleis, J.; Greeley, J.; Romero, N.; Morozov, V.; Falsig, H.; Larsen, A. H.; Lu, J.; Mortensen, J. J.; Dułak, M.; Thygesen, K. S., Finite size effects in chemical bonding: From small clusters to solids. Catalysis Letters 2011, 141 (8), 1067-1071.
79. Tritsaris, G.; Greeley, J.; Rossmeisl, J.; Nørskov, J. K., Atomic-scale modeling of particle size effects for the oxygen reduction reaction on Pt. Catalysis Letters 2011, 141 (7), 909-913.
80. Bezemer, G. L.; Bitter, J. H.; Kuipers, H. P.; Oosterbeek, H.; Holewijn, J. E.; Xu, X.; Kapteijn, F.; van Dillen, A. J.; de Jong, K. P., Cobalt particle size effects in the Fischer− Tropsch reaction studied with carbon nanofiber supported catalysts. Journal of the American Chemical Society 2006, 128 (12), 3956-3964.
81. Den Breejen, J.; Radstake, P.; Bezemer, G.; Bitter, J.; Frøseth, V.; Holmen, A.; Jong, K. d., On the origin of the cobalt particle size effects in Fischer− Tropsch catalysis. Journal of the American Chemical Society 2009, 131 (20), 7197-7203.
82. Moshfegh, A., Nanoparticle catalysts. Journal of Physics D: Applied Physics 2009, 42 (23), 233001.
83. Mistry, H.; Reske, R.; Zeng, Z.; Zhao, Z.-J.; Greeley, J.; Strasser, P.; Cuenya, B. R., Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. Journal of the American Chemical Society 2014, 136 (47), 16473-16476.
84. Argo, A. M.; Odzak, J. F.; Gates, B. C., Role of Cluster Size in Catalysis: Spectroscopic Investigation of γ-Al2O3-Supported Ir4 and Ir6 during Ethene Hydrogenation. Journal of the American Chemical Society 2003, 125 (23), 7107-7115.
85. Cuenya, B. R.; Baeck, S.-H.; Jaramillo, T. F.; McFarland, E. W., Size-and support-dependent electronic and catalytic properties of Au0/Au3+ nanoparticles synthesized from block copolymer micelles. Journal of the American Chemical Society 2003, 125 (42), 12928-12934.
86. Behafarid, F.; Ono, L.; Mostafa, S.; Croy, J.; Shafai, G.; Hong, S.; Rahman, T.; Bare, S. R.; Cuenya, B. R., Electronic properties and charge transfer phenomena in Pt nanoparticles on γ-Al 2 O 3: size, shape, support, and adsorbate effects. Physical Chemistry Chemical Physics 2012, 14 (33), 11766-11779.
87. Lv, W.; Zhou, J.; Kong, F.; Fang, H.; Wang, W., Porous tin-based film deposited on copper foil for electrochemical reduction of carbon dioxide to formate. International Journal of Hydrogen Energy 2016, 41 (3), 1585-1591.
88. Xie, J.; Huang, Y.; Yu, H., Tuning the catalytic selectivity in electrochemical CO2 reduction on copper oxide-derived nanomaterials. Frontiers of Environmental Science & Engineering 2015, 9 (5), 861-866.
89. Liu, E.; Qi, L.; Bian, J.; Chen, Y.; Hu, X.; Fan, J.; Liu, H.; Zhu, C.; Wang, Q., A facile strategy to fabricate plasmonic Cu modified TiO 2 nano-flower films for photocatalytic reduction of CO 2 to methanol. Materials Research Bulletin 2015, 68, 203-209.
90. Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J., Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. Journal of the American Chemical Society 2015, 137 (43), 13844-13850.
91. Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X., Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc 2015, 137 (13), 4288-4291.
92. Li, J.; Prentice, G., Electrochemical Synthesis of Methanol from CO 2 in High‐Pressure Electrolyte. Journal of the Electrochemical Society 1997, 144 (12), 4284-4288.
93. Hara, K.; Tsuneto, A.; Kudo, A.; Sakata, T., Electrochemical Reduction of CO 2 on a Cu Electrode under High Pressure Factors that Determine the Product Selectivity. Journal of the Electrochemical Society 1994, 141 (8), 2097-2103.
94. Kas, R.; Kortlever, R.; Yılmaz, H.; Koper, M.; Mul, G., Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2015, 2 (3), 354-358.
95. Hossain, S. S.; Ahmed, S., Electrochemical reduction of carbon dioxide over CNT-supported nanoscale copper electrocatalysts. Journal of Nanomaterials 2014, 2014, 9.
96. Merino-Garcia, I.; Alvarez-Guerra, E.; Albo, J.; Irabien, A., Electrochemical membrane reactors for the utilisation of carbon dioxide. Chemical Engineering Journal 2016, 305, 104-120.
97. Lu, Q.; Jiao, F., Electrochemical CO 2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29, 439-456.
98. Thorson, M. R.; Siil, K. I.; Kenis, P. J., Effect of Cations on the Electrochemical Conversion of CO2 to CO. Journal of the Electrochemical Society 2013, 160 (1), F69-F74.
99. Schizodimou, A.; Kyriacou, G., Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochimica Acta 2012, 78, 171-176.
100. Murata, A.; Hori, Y., Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bulletin of the Chemical Society of Japan 1991, 64 (1), 123-127.
101. Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J., Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chemical Reviews 2013, 113 (8), 6621-6658.
102. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy & Environmental Science 2012, 5 (5), 7050-7059.
103. Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S., Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. Journal of the Chemical Society, Chemical Communications 1988, (1), 17-19.
104. Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A., Electrochemical reduction of CO at a copper electrode. The Journal of Physical Chemistry B 1997, 101 (36), 7075-7081.
105. DeCiccio, D.; Ahn, S.; Sen, S.; Schunk, F.; Palmore, G.; Rose-Petruck, C., Electrochemical reduction of CO 2 with clathrate hydrate electrolytes and copper foam electrodes. Electrochemistry Communications 2015, 52, 13-16.
106. Setterfield-Price, B. M.; Dryfe, R. A., The influence of electrolyte identity upon the electro-reduction of CO 2. Journal of Electroanalytical Chemistry 2014, 730, 48-58.
107. Dufek, E. J.; Lister, T. E.; McIlwain, M. E., Influence of electrolytes and membranes on cell operation for syn-gas production. Electrochemical and Solid-State Letters 2012, 15 (4), B48-B50.
108. Kim, B.; Ma, S.; Jhong, H.-R. M.; Kenis, P. J., Influence of dilute feed and pH on electrochemical reduction of CO 2 to CO on Ag in a continuous flow electrolyzer. Electrochimica Acta 2015, 166, 271-276.
109. Ogura, K.; Ferrell III, J. R.; Cugini, A. V.; Smotkin, E. S.; Salazar-Villalpando, M. D., CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochimica Acta 2010, 56 (1), 381-386.
110. Varela, A. S.; Ju, W.; Reier, T.; Strasser, P., Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catalysis 2016, 6 (4), 2136-2144.
111. Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J.; Masel, R. I., Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 1209786.
112. Alvarez-Guerra, M.; Albo, J.; Alvarez-Guerra, E.; Irabien, A., Ionic liquids in the electrochemical valorisation of CO 2. Energy & Environmental Science 2015, 8 (9), 2574-2599.
113. Pardal, T.; Messias, S.; Sousa, M.; Machado, A. S. R.; Rangel, C. M.; Nunes, D.; Pinto, J. V.; Martins, R.; da Ponte, M. N., Syngas production by electrochemical CO2 reduction in an ionic liquid based-electrolyte. Journal of CO2 Utilization 2017, 18, 62-72.
114. Sun, X.; Kang, X.; Zhu, Q.; Ma, J.; Yang, G.; Liu, Z.; Han, B., Very highly efficient reduction of CO 2 to CH 4 using metal-free N-doped carbon electrodes. Chemical Science 2016, 7 (4), 2883-2887.
115. Lau, G. P.; Schreier, M.; Vasilyev, D.; Scopelliti, R.; Grätzel, M.; Dyson, P. J., New insights into the role of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode. Journal of the American Chemical Society 2016, 138 (25), 7820-7823.
116. Medina-Ramos, J.; Pupillo, R. C.; Keane, T. P.; DiMeglio, J. L.; Rosenthal, J., Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts. Journal of the American Chemical Society 2015, 137 (15), 5021-5027.
117. Medina-Ramos, J.; DiMeglio, J. L.; Rosenthal, J., Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials. Journal of the American Chemical Society 2014, 136 (23), 8361-8367.
118. Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R., Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016, 353 (6298), 467-470.
119. Neubauer, S. S.; Krause, R. K.; Schmid, B.; Guldi, D. M.; Schmid, G., Overpotentials and Faraday Efficiencies in CO2 Electrocatalysis–the Impact of 1‐Ethyl‐3‐Methylimidazolium Trifluoromethanesulfonate. Advanced Energy Materials 2016, 6 (9), 1502231.
120. Vassiliev, Y. B.; Bagotzky, V.; Khazova, O.; Mayorova, N., Electroreduction of carbon dioxide: Part II. The mechanism of reduction in aprotic solvents. Journal of electroanalytical chemistry and interfacial electrochemistry 1985, 189 (2), 295-309.
121. Mizuno, T.; Naitoh, A.; Ohta, K., Electrochemical reduction of CO2 in methanol at− 30 C. Journal of Electroanalytical Chemistry 1995, 391 (1-2), 199-201.
122. Ma, L.; Fan, S.; Zhen, D.; Wu, X.; Liu, S.; Lin, J.; Huang, S.; Chen, W.; He, G., Electrochemical Reduction of CO2 in Proton Exchange Membrane Reactor: The Function of Buffer Layer. Industrial & Engineering Chemistry Research 2017, 56 (37), 10242-10250.
123. Kang, X.; Zhu, Q.; Sun, X.; Hu, J.; Zhang, J.; Liu, Z.; Han, B., Highly efficient electrochemical reduction of CO 2 to CH 4 in an ionic liquid using a metal–organic framework cathode. Chemical science 2016, 7 (1), 266-273.
124. Nie, X.; Luo, W.; Janik, M. J.; Asthagiri, A., Reaction mechanisms of CO 2 electrochemical reduction on Cu (111) determined with density functional theory. Journal of Catalysis 2014, 312, 108-122.
125. Cheng, T.; Xiao, H.; Goddard III, W. A., Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu (100) surface at 298 K from quantum mechanics free energy calculations with explicit water. Journal of the American Chemical Society 2016, 138 (42), 13802-13805.
126. Azuma, M.; Hashimoto, K.; Hiramoto, M.; Watanabe, M.; Sakata, T., Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low‐Temperature Aqueous KHCO 3 Media. Journal of the Electrochemical Society 1990, 137 (6), 1772-1778.
127. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochimica Acta 1994, 39 (11-12), 1833-1839.
128. DeWulf, D. W.; Jin, T.; Bard, A. J., Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. Journal of the Electrochemical Society 1989, 136 (6), 1686-1691.
129. Montoya, J. H.; Peterson, A. A.; Nørskov, J. K., Insights into C C Coupling in CO2 Electroreduction on Copper Electrodes. ChemCatChem 2013, 5 (3), 737-742.
130. Wang, S.; Temel, B.; Shen, J.; Jones, G.; Grabow, L. C.; Studt, F.; Bligaard, T.; Abild-Pedersen, F.; Christensen, C. H.; Nørskov, J. K., Universal brønsted-evans-polanyi relations for c–c, c–o, c–n, n–o, n–n, and o–o dissociation reactions. Catalysis letters 2011, 141 (3), 370-373.
131. Lu, X.; Leung, D. Y.; Wang, H.; Leung, M. K.; Xuan, J., Electrochemical reduction of carbon dioxide to formic acid. ChemElectroChem 2014, 1 (5), 836-849.
132. Adit Maark, T.; Nanda, B., CO and CO2 Electrochemical Reduction to Methane on Cu, Ni, and Cu3Ni (211) Surfaces. The Journal of Physical Chemistry C 2016, 120 (16), 8781-8789.
133. Durand, W. J.; Peterson, A. A.; Studt, F.; Abild-Pedersen, F.; Nørskov, J. K., Structure effects on the energetics of the electrochemical reduction of CO 2 by copper surfaces. Surface Science 2011, 605 (15), 1354-1359.
134. Nie, X.; Esopi, M. R.; Janik, M. J.; Asthagiri, A., Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angewandte Chemie International Edition 2013, 52 (9), 2459-2462.
135. Hansen, H. A.; Montoya, J. H.; Zhang, Y.-J.; Shi, C.; Peterson, A. A.; Nørskov, J. K., Electroreduction of methanediol on copper. Catalysis Letters 2013, 143 (7), 631-635.
136. Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K., Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. The Journal of Physical Chemistry Letters 2015, 6 (11), 2032-2037.
137. Calle‐Vallejo, F.; Koper, M., Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes. Angewandte Chemie 2013, 125 (28), 7423-7426.
138. Xie, J.-F.; Huang, Y.-X.; Li, W.-W.; Song, X.-N.; Xiong, L.; Yu, H.-Q., Efficient electrochemical CO 2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite. Electrochimica Acta 2014, 139, 137-144.
139. McMurry, J. E.; Fleming, M. P., New method for the reductive coupling of carbonyls to olefins. Synthesis of. beta.-carotene. Journal of the American Chemical Society 1974, 96 (14), 4708-4709.
140. Chen, Y.; Kanan, M. W., Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. Journal of the American Chemical Society 2012, 134 (4), 1986-1989.
141. Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N., Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. The Journal of Physical Chemistry B 2002, 106 (1), 15-17.
142. Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T., Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. Journal of the American Chemical Society 2005, 127 (31), 11140-11145.
143. Bian, C.-R.; Suzuki, S.; Asakura, K.; Ping, L.; Toshima, N., Extended X-ray absorption fine structure studies on the structure of the poly (vinylpyrrolidone)-stabilized Cu/Pd nanoclusters colloidally dispersed in solution. The Journal of Physical Chemistry B 2002, 106 (34), 8587-8598.
144. Toshima, N.; Yonezawa, T., Bimetallic nanoparticles—novel materials for chemical and physical applications. New Journal of Chemistry 1998, 22 (11), 1179-1201.
145. Toshima, N.; Harada, M.; Yamazaki, Y.; Asakura, K., Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. The Journal of Physical Chemistry 1992, 96 (24), 9927-9933.
146. Toshima, N.; Harada, M.; Yonezawa, T.; Kushihashi, K.; Asakura, K., Structural analysis of polymer-protected palladium/platinum bimetallic clusters as dispersed catalysts by using extended x-ray absorption fine structure spectroscopy. The Journal of Physical Chemistry 1991, 95 (19), 7448-7453.
147. Chen, C. H.; Pan, C. J.; Su, W. N.; Sarma, L. S.; Andra, C. C. A.; Sheu, H. S.; Liu, D. G.; Lee, J. F.; Hwang, B. J., Unravelling surface composition of bimetallic nanoparticles. ChemNanoMat 2016, 2 (2), 117-124.
148. Highfield, J.; Liu, T.; Loo, Y. S.; Grushko, B.; Borgna, A., Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation. Physical Chemistry Chemical Physics 2009, 11 (8), 1196-1208.
149. Yin, Z.; Gao, D.; Yao, S.; Zhao, B.; Cai, F.; Lin, L.; Tang, P.; Zhai, P.; Wang, G.; Ma, D., Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO 2 to CO. Nano Energy 2016, 27, 35-43.
150. Camilo, M. R.; Silva, W. O.; Lima, F. H., Investigation of Electrocatalysts for Selective Reduction of CO2 to CO: Monitoring the Reaction Products by on line Mass Spectrometry and Gas Chromatography.
151. Sinfelt, J.; Via, G.; Lytle, F., Structure of bimetallic clusters. Extended x‐ray absorption fine structure (EXAFS) studies of Ru–Cu clusters. The Journal of Chemical Physics 1980, 72 (9), 4832-4844.
152. Hwang, B. J.; Chen, C.-H.; Sarma, L. S.; Chen, J.-M.; Wang, G.-R.; Tang, M.-T.; Liu, D.-G.; Lee, J.-F., Probing the formation mechanism and chemical states of carbon-supported Pt− Ru nanoparticles by in situ X-ray absorption spectroscopy. The Journal of Physical Chemistry B 2006, 110 (13), 6475-6482.
153. Zabinsky, S.; Rehr, J.; Ankudinov, A.; Albers, R.; Eller, M., Multiple-scattering calculations of X-ray-absorption spectra. Physical Review B 1995, 52 (4), 2995.
154. Bazin, D.; Sayers, D.; Rehr, J., Comparison between X-ray absorption spectroscopy, anomalous wide angle X-ray scattering, anomalous small angle X-ray scattering, and diffraction anomalous fine structure techniques applied to nanometer-scale metallic clusters. The Journal of Physical Chemistry B 1997, 101 (51), 11040-11050.
155. Park, S.; Wieckowski, A.; Weaver, M. J., Electrochemical infrared characterization of CO domains on ruthenium-decorated platinum nanoparticles. Journal of the American Chemical Society 2003, 125 (8), 2282-2290.
156. Wang, D.-Y.; Gong, M.; Chou, H.-L.; Pan, C.-J.; Chen, H.-A.; Wu, Y.; Lin, M.-C.; Guan, M.; Yang, J.; Chen, C.-W., Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction. Journal of the American Chemical Society 2015, 137 (4), 1587-1592.
157. De Luna, P.; Quintero-Bermudez, R.; Dinh, C.-T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P.; Sargent, E. H., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis 2018, 1 (2), 103.
158. Gattrell, M.; Gupta, N., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry 2006, 594 (1), 1-19.
159. Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J.; Masel, R. I., Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 334 (6056), 643-644.
160. Chen, Y.; Li, C. W.; Kanan, M. W., Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. Journal of the American Chemical Society 2012, 134 (49), 19969-19972.
161. Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Nørskov, J. K., Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. The journal of physical chemistry letters 2013, 4 (3), 388-392.
162. Ju, W.; Bagger, A.; Hao, G.-P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO 2. Nature Communications 2017, 8 (1), 944.
163. Xu, Z.; Lai, E.; Shao-Horn, Y.; Hamad-Schifferli, K., Compositional dependence of the stability of AuCu alloy nanoparticles. Chemical Communications 2012, 48 (45), 5626-5628.
164. Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F., Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. Journal of the American Chemical Society 2014, 136 (40), 14107-14113.
165. Padilla, M.; Baturina, O.; Gordon, J. P.; Artyushkova, K.; Atanassov, P.; Serov, A., Selective CO2 electroreduction to C2H4 on porous Cu films synthesized by sacrificial support method. Journal of CO2 Utilization 2017, 19, 137-145.
166. Kovács, G. b.; Kozlov, S. M.; Neyman, K. M., Versatile optimization of chemical ordering in bimetallic nanoparticles. The Journal of Physical Chemistry C 2017, 121 (20), 10803-10808.
167. Ma, M.; Hansen, H. A.; Valenti, M.; Wang, Z.; Cao, A.; Dong, M.; Smith, W. A., Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films. Nano Energy 2017, 42, 51-57.
168. Christophe, J.; Doneux, T.; Buess-Herman, C., Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper–gold alloys. Electrocatalysis 2012, 3 (2), 139-146.
169. Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis 2004, 36 (12), 1564-1574.
170. G. Michael Bancroft, B. D. B., and David K. Creber, Shake-up Satellite Structure in the X-Ray Photoelectron Spectra (ESCA) of Metal Hexacarbonyls. Inorganic Chemistry 1978, 17 (4), 1008-1013.
171. Petter Persson, S. L., Abraham Szoke, Beata Ziaja and Janos Hajdu, Shake-up and shake-off excitations with associated
electron losses in X-ray studies of proteins. Protein Science 2001, 10, 2480–2484.
172. Yuan, K.; Sfaelou, S.; Qiu, M.; Lützenkirchen-Hecht, D.; Zhuang, X.; Chen, Y.; Yuan, C.; Feng, X.; Scherf, U., Synergetic Contribution of Boron and Fe–N x Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters 2018, 3 (1), 252-260.
173. Zhang, H.; Ma, Y.; Quan, F.; Huang, J.; Jia, F.; Zhang, L., Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets. Electrochemistry Communications 2014, 46, 63-66.
174. Song, Y.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L.; Wu, Z.; Meyer, H. M.; Chi, M.; Ma, C.; Sumpter, B. G., High‐Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle/N‐Doped Graphene Electrode. ChemistrySelect 2016, 1 (19), 6055-6061.
175. Yin, Z.; Gao, D.; Yao, S.; Zhao, B.; Cai, F.; Lin, L.; Tang, P.; Zhai, P.; Wang, G.; Ma, D., Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 2016, 27, 35-43.
176. Hoffman, Z. B.; Gray, T. S.; Moraveck, K. B.; Gunnoe, T. B.; Zangari, G., Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper–indium electrocatalysts. ACS Catalysis 2017, 7 (8), 5381-5390.
177. Ma, S.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P. J., One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. Journal of Power Sources 2016, 301, 219-228.
178. Niu, Z.; Li, Y., Removal and utilization of capping agents in nanocatalysis. Chemistry of Materials 2013, 26 (1), 72-83.
179. Li, D.; Wang, C.; Tripkovic, D.; Sun, S.; Markovic, N. M.; Stamenkovic, V. R., Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. Acs Catalysis 2012, 2 (7), 1358-1362.
180. Shao, M.; Odell, J. H.; Choi, S.-I.; Xia, Y., Electrochemical surface area measurements of platinum-and palladium-based nanoparticles. Electrochemistry Communications 2013, 31, 46-48.
181. Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L.-Y.; Bao, M.; Asao, N.; Chen, M.-W.; Yamamoto, Y., Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: Remarkable effect of amine additives. Journal of the American Chemical Society 2012, 134 (42), 17536-17542.
182. Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K., Metal–ligand core–shell nanocomposite catalysts for the selective semihydrogenation of alkynes. Angewandte Chemie International Edition 2013, 52 (5), 1481-1485.
183. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Physical Review B 1993, 47 (1), 558.
184. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical review letters 1996, 77 (18), 3865.
185. Iwasawa, Y., X-ray absorption fine structure for catalysts and surfaces. World Scientific: 1996; Vol. 2.
186. Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K., A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angewandte Chemie International Edition 2015, 54 (7), 2146-2150.
187. Xie, M. S.; Xia, B. Y.; Li, Y.; Yan, Y.; Yang, Y.; Sun, Q.; Chan, S. H.; Fisher, A.; Wang, X., Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy & Environmental Science 2016, 9 (5), 1687-1695.
188. Kim, J.-H.; Woo, H.; Yun, S.-W.; Jung, H.-W.; Back, S.; Jung, Y.; Kim, Y.-T., Highly active and selective Au thin layer on Cu polycrystalline surface prepared by galvanic displacement for the electrochemical reduction of CO2 to CO. Applied Catalysis B: Environmental 2017, 213, 211-215.
189. Costentin, C.; Robert, M.; Savéant, J.-M., Catalysis of the electrochemical reduction of carbon dioxide. Chemical Society Reviews 2013, 42 (6), 2423-2436.
190. Verma, S.; Kim, B.; Jhong, H. R. M.; Ma, S.; Kenis, P. J., A Gross‐Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2. ChemSusChem 2016, 9 (15), 1972-1979.
191. Lu, Q.; Jiao, F., Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29, 439-456.
192. Huang, P.; Ci, S.; Wang, G.; Jia, J.; Xu, J.; Wen, Z., High-activity Cu nanowires electrocatalysts for CO2 reduction. Journal of CO2 Utilization 2017, 20, 27-33.
193. Lu, Q.; Rosen, J.; Jiao, F., Nanostructured metallic electrocatalysts for carbon dioxide reduction. ChemCatChem 2015, 7 (1), 38-47.
194. Spivey, J. J.; Egbebi, A., Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chemical Society Reviews 2007, 36 (9), 1514-1528.
195. Lee, H.; Kim, S.-K.; Ahn, S. H., Electrochemical preparation of Ag/Cu and Au/Cu foams for electrochemical conversion of CO2 to CO. Journal of Industrial and Engineering Chemistry 2017, 54, 218-225.
196. Roberts, F. S.; Kuhl, K. P.; Nilsson, A., High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angewandte Chemie International Edition 2015, 54 (17), 5179-5182.
197. Monzó, J.; Malewski, Y.; Kortlever, R.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Koper, M.; Rodriguez, P., Enhanced electrocatalytic activity of Au@ Cu core@ shell nanoparticles towards CO 2 reduction. Journal of Materials Chemistry A 2015, 3 (47), 23690-23698.
198. Kang, Q.; Wang, T.; Li, P.; Liu, L.; Chang, K.; Li, M.; Ye, J., Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au–Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angewandte Chemie 2015, 127 (3), 855-859.
199. Chen, K.; Zhang, X.; Williams, T.; Bourgeois, L.; MacFarlane, D. R., Electrochemical reduction of CO2 on core-shell Cu/Au nanostructure arrays for syngas production. Electrochimica Acta 2017, 239, 84-89.

無法下載圖示 全文公開日期 2023/08/13 (校內網路)
全文公開日期 2025/08/13 (校外網路)
全文公開日期 2027/08/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE