簡易檢索 / 詳目顯示

研究生: 洪御展
Yu-Chan Hung
論文名稱: 超音波結合經修飾二甲雙胍之含氧微氣泡於氧氣葡萄糖供應量不足之耳蝸細胞治療
Ultrasound combined with metformin coating oxygenated microbubbles for in vitro oxygen-glucose deprivation cochlear cells treatment
指導教授: 廖愛禾
Ai-Ho Liao
口試委員: 廖愛禾
Ai-Ho Liao
施政坪
Cheng-Ping Shih
王智弘
Chih-Hung Wang
沈哲州
Che-Chou Shen
莊賀喬
Ho-Chiao Chuang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: 二甲雙胍含氧白蛋白微氣泡超音波缺血性活性氧
外文關鍵詞: Metformin, oxygenated microbubbles, ultrasound, ischemic, ROS
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

據世界衛生組織報告,成年人發生突發性聽損已是全球主要疾病之一,大多數的突發性耳聾可能會導致永久性的聽力障礙,當內耳組織因突發性耳聾發生時,會導致該組織區域血流量下降,引發缺血性之傷害,使葡萄糖與氧氣供應量不足(即Oxygen Glucose Deprivation),會破壞粒線體,且產生大量自由基,導致大量毛細胞死亡,治療方式包括藥物及高壓氧等,治療效果有限無法令人滿意,此外高壓氧提供的高濃度氧氣可能會增加組織內的活性氧(ROS)容易導致耳蝸進一步損傷,因此研發新式內耳缺氧性損傷之療法是非常重要之研究議題。二甲雙胍(Metformin)的主要作用是活化單磷酸腺苷活化蛋白質激酶(AMP activated protein kinase, AMPK)降低合成代謝反應,對神經與聽力有保護作用,因此本論文製備經修飾二甲雙胍之包覆氧氣白蛋白微氣泡(MET-OMB),用以代替原先的高壓氧治療策略,並合併超音波介導技術應用於治療內耳缺氧性損傷。
實驗結果中, 含氧微氣泡(OMB)與MET-OMB平均粒徑大小依序為1.75 ± 0.24µm、2.22 ± 0.25µm;表面電位依序為-12.26 ± 1.70mV、3.82 ± 1.00 mV,藉由濃度儀確認MET-OMB濃度為2.8 ± 1.25(×108 bubbles/mL)且MET吸附率為69.49 ± 2.98 %。透析袋藥物釋放實驗中,確認可藉由超音波誘發MET-OMB穴蝕效應將氧氣從透析袋釋出;在體外細胞實驗結果中(n=5),以組織氧分壓與溫度監控儀測量培養液氧分壓變化,並藉由氧氣與葡萄糖掠奪之方式,確認HEI-OC1細胞的生存率,實驗組別分別為:No treatment(OGD)組、單純MET溶液浸泡與超音波組(OGD+MET/OGD+MET+US)、單純MET-OMB溶液浸泡與超音波組(OGD+MET-OMB / OGD+MET-OMB+US)。在體外細胞實驗中,超音波結合MET-OMB之細胞生存率可提升18.04%,ROS抑制效果為49.21%,在抑制細胞凋亡的部分,超音波結合MET-OMB的效果相較於單純使用MET高許多,證明可藉由吸附MET之含氧微氣泡經超音波施打後,提高保護對於缺血性損傷之細胞,也可以降低細胞ROS的產生,在細胞凋亡抑制的螢光染色影像結果也有相當好的表現。


According to the report of the World Health Organization (WHO), sudden deafness in adults is one of the main diseases in the world. Most sudden deafness may cause permanent hearing impairment. When sudden deafness occurs due to damage to the inner ear, the blood flow in the tissue is reduced, causing ischemic damage and insufficient glucose and oxygen supply (Oxygen Glucose Deprivation, OGD). At this time, the mitochondria of the earing cell is damaged and generates a large number of free radicals, resulting in the death of a large number of hair cells. Treatment methods include drugs and hyperbaric oxygen, etc. However, the treatment effect is limited and unsatisfactory. The high concentration of oxygen provided by hyperbaric oxygen may increase the reactive oxygen species (ROS) in the tissue and easily lead to further damage to the cochlea. Therefore, the development of a new treatment platform for inner ear hypoxic injury is very important. In addition, the main function of Metformin (MET) is to activate adenosine monophosphate-activated protein kinase (AMP activated protein kinase, AMPK) to reduce the anabolic reaction, and has protective effects on nerve and hearing. In this thesis, a new Metformin coating oxygenated albumin microbubble (MET-OMB) were prepared, used to replace the original hyperbaric oxygen therapy strategy, and combined with ultrasound-mediated technology for the treatment of hypoxic damage of the inner ear.
In the experimental results, the mean diameters of oxygen-containing microbubbles (OMB) and MET-OMB are 1.75 ± 0.24 µm and 2.22 ± 0.25 µm, and the surface potentials are -12.26 ± 1.70 mV and 3.82 ± 1.00 mV. The concentration of the MET-OMB was 2.8 ± 1.25 (×108 bubbles/mL) and the coating efficancy of MET was 69.49 ± 2.98 %. In the drug release experiment of the dialysis bag, it was confirmed that the cavitation effect of MET-OMB induced by ultrasound can release oxygen from the dialysis bag; in the results of the in vitro cell experiment (n=5), the oxygen monitoring systemt was used to measure changes in the partial pressure of oxygen in the culture liquid. Then, the survival rate of OGD HEI-OC1 cells was confirmed. The in vitro experimental groups were: No treatment (OGD), MET alone (OGD+ MET), ultrasound combined with MET (OGD+MET+US), MET-OMB alone (OGD+MET-OMB) and ultrasound combined with MET-OMB (OGD+MET-OMB+US). In the in vitro cell experiments, the cell survival rate of OGD+MET-OMB+US can be increased by 18.04%, and the ROS inhibition effect is 49.21%. In the part of inhibiting cell apoptosis, the effect of OGD+MET-OMB+US is compared with that of MET alone. It is much higher, which proves that the oxygen-containing microbubbles adsorbed by MET can improve the protection of cells against ischemic damage after ultrasonic treatment, and can also reduce the production of ROS in cells. The results of fluorescence microscope images of cell apoptosis inhibition in OGD+MET-OMB+US group also has good performances.

中文摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第 1 章 緒論 1 1.1 內耳 1 1.2 突發性耳聾 2 1.3 二甲雙胍(Metformin) 2 1.3.1二甲雙胍發展 2 1.3.2藥理作用 3 1.4 人類血清白蛋白 4 1.5 超音波 5 1.5.1超音波簡介 5 1.5.2醫用超音波(Medical Ultrasound) 5 1.5.3超音波結合微氣泡於治療之應用 6 1.6 微氣泡對比劑 7 1.7 含氧微氣泡 9 1.8 活性氧(ROS) 9 1.9 研究動機 10 第 2 章 材料與方法 12 2.1研究架構 12 2.2藥品與設備 13 2.2.1藥品 13 2.2.2設備 14 2.3含氧白蛋白微氣泡製備 15 2.4吸附Metformin含氧微氣泡之物理參數 16 2.4.1吸附Metformin含氧微氣泡之製備 16 2.4.2高解析度場發射掃描式電子顯微鏡拍攝 17 2.4.3粒徑分析 18 2.4.4電位分析 19 2.4.5濃度量測 20 2.4.6 Metformin與含氧微氣泡之吸附效率評估 21 2.4.7含氧微氣泡經超音波施打模擬藥物釋放之釋氧測試 21 2.5含氧微氣泡對比劑影像系統分析 23 2.6細胞培養 24 2.6.1細胞株與細胞繼代 24 2.6.2細胞計數 25 2.7體外細胞實驗 26 2.7.1檢測細胞對環境氧分壓之消耗量 26 2.7.2細胞生存率分析 27 2.7.3各時間不同培養液在缺氧環境下之細胞生存率 28 2.7.4細胞實驗組別設計與方法 30 2.7.5細胞ROS分析 28 2.7.6細胞凋亡TUNEL檢測 32 2.8耳蝸外殖體實驗 33 2.8.1離體組織耳蝸取出與培養 33 2.8.2離體組織耳蝸實驗 33 2.8.3離體組織耳蝸染色 34 2.9統計分析 34 第 3 章 實驗結果 34 3.1 含氧微氣泡與吸附Metformin之含氧微氣泡性質分析 35 3.1.1光學定性分析 35 3.1.2高解析度場發掃描式電子顯微鏡表面分析 36 3.1.3粒徑分析 37 3.1.4電位分析 38 3.1.5濃度分析 39 3.1.6含氧微氣泡吸附Metformin效率之評估 40 3.2含氧微氣泡對比劑影像系統分析 42 3.3含氧微氣泡經超音波施打模擬藥物釋放之釋氧分析 43 3.4對細胞施打超音波微氣泡之環境氧分壓變化 44 3.5各時間不同培養液在缺氧環境下之細胞生存率 45 3.6細胞缺氧傷害與超音波介導技術結合微氣泡對於細胞存活之影響 46 3.7細胞缺氧傷害ROS分析 48 3.8細胞凋亡抑制 49 3.9耳蝸外殖體螢光染色 50 第 4 章 討論 52 第 5 章 結論 54 參考文獻 55

[1]. Ryan Crane and Shannon M. Conley et al., “Gene Therapy to the Retina and the Cochlea”, Front Neurosci,2021 Mar;15: 652215.
[2]. White HJ, Helwany M, Biknevicius AR, et al. Anatomy, Head and Neck, Ear Organ of Corti. [Updated 2023 Jan 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-.
[3]. Wilson WR, Byl FM, Laird N. The efficacy of steroids in the treatment of idiopathic sudden hearing loss. A double-blind clinical study. Arch Otolaryngol. 1980 Dec;106(12):772-6
[4]. Chadha S, Kamenov K, Cieza A. The world report on hearing, 2021. Bull World Health Organ. 2021 Apr 1;99(4):242-242A
[5]. R. Thalmann, T. Miyoshi, and I. Thalmann, "The influence of ischemia upon the energy reserves of inner ear tissues," The Laryngoscope, vol. 82, no. 12, pp. 2249-2272, 1972.
[6]. K. Lamm and W. Arnold, "Successful Treatment of Noise‐Induced Cochlear Ischemia, Hypoxia, and Hearing Loss," Annals of the New York Academy of Sciences, vol. 884, no. 1, pp. 233-248, 1999.
[7]. Tabuchi K, Nishimura B, Tanaka S, Hayashi K, Hirose Y, Hara A. Ischemia-reperfusion injury of the cochlea: pharmacological strategies for cochlear protection and implications of glutamate and reactive oxygen species. Curr Neuropharmacol. 2010 Jun;8(2):128-34
[8]. Olex-Zarychta D. Hyperbaric Oxygenation as Adjunctive Therapy in the Treatment of Sudden Sensorineural Hearing Loss. Int J Mol Sci. 2020 Nov 14;21(22):8588.
[9]. J. C. Buckey, "Use of gases to treat cochlear conditions," Frontiers in cellular neuroscience, vol. 13, p. 155, 2019.
[10]. Wu PH, Lee CY, Chen HC, Lee JC, Chu YH, Cheng LH, Wang CH, Shih CP*. Clinical Characteristics and Correlation between Hearing Outcomes after Different Episodes of Recurrent Idiopathic Sudden Sensorineural Hearing Loss. Auris Nasus Larynx. 2021 Oct;48(5):870-877.
[11]. B. Ö . Ç akir et al., "Negative effect of immediate hyperbaric oxygen therapy in acute acoustic trauma," Otology & Neurotology, vol. 27, no. 4, pp. 478-483, 2006.
[12]. British Herbal Pharmacopoeia. Keighley, UK: British Herbal Medicine Association, 1976.
[13]. Watanabe CK. Studies in the metabolic changes induced by administration of guanidine bases. J Biol Chem 1918; 33: 253– 265.
[14]. Grzybowska M, Bober J, Olszewska M. Metformin-mechanisms of action and use for the treatment of type 2 diabetes mellitus. Postepy Hig Med Dosw (Online) 2011; 65:277-85.
[15]. Berstein LM. Metformin in obesity, cancer and aging:addressing controversies. Aging (Albany NY) 2012; 4:320-9.
[16]. Wu MS, Johnston P, Sheu WH, et al. Effect of Metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care 1990; 13: 1-8.
[17]. Diamanti-Kandarakis E, Christakou CD, Kandaraki E,Economou FN. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol 2010; 162: 193-212.
[18]. Decensi A, Puntoni M, Goodwin P, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila) 2010; 3: 1451-61.
[19]. Piwkowska A, Rogacka D, Jankowski M, Dominiczak MH,Stepinski JK, Angielski S. Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem Biophys Res Commun 2010; 393: 268-73.
[20]. Mujica-Mota MA, Salehi P, Devic S, Daniel SJ. Safety and otoprotection of Metformin in radiation-induced sensorineural hearing loss in the guinea pig. Otolaryngol Head Neck Surg. 2014 May;150(5):859-65.
[21]. Chang J, Jung HH, Yang JY, Lee S, Choi J, Im GJ, Chae SW. Protective effect of Metformin against cisplatin-induced ototoxicity in an auditory cell line. J Assoc Res Otolaryngol. 2014 Apr;15(2):149-58. doi: 10.1007/s10162-013-0431-y. Epub 2013 Dec 3.
[22]. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of Metformin action.
[23]. Owen MR, Doran E, Halestrap AP. Evidence that Metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000 Jun 15;348 Pt 3(Pt 3):607-14.
[24]. El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000 Jan 7;275(1):223-8.
[25]. Diniz Vilela D, Gomes Peixoto L, Teixeira RR, Belele Baptista N, Carvalho Caixeta D, Vieira de Souza A, Machado HL, Pereira MN, Sabino-Silva R, Espindola FS. The Role of Metformin in Controlling Oxidative Stress in Muscle of Diabetic Rats. Oxid Med Cell Longev. 2016;2016:6978625.
[26]. Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of Metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol. 2020 Jul;34:101517.
[27]. Zamanian MY, Giménez-Llort L, Nikbakhtzadeh M, Kamiab Z, Heidari M, Bazmandegan G. The Therapeutic Activities of Metformin: Focus on the Nrf2 Signaling Pathway and Oxidative Stress Amelioration. Curr Mol Pharmacol. 2023;16(3):331-345.
[28]. Dehkordi A.H., Abbaszadeh A., Mir S., Hasanvand A. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts. Renal Inj Prev. 2019;8(1):54.
[29]. Cameron A.R., Morrison V.L., Levin D., Mohan M., Forteath C., Beall C., McNeilly A.D., Balfour D.J., Savinko T., Wong A.K., Viollet B., Sakamoto K., Fagerholm S.C., Foretz M., Lang C.C., Rena G. Anti-inflammatory effects of Metformin irrespective of diabetes status. Circ. Res. 2016;119(5):652–665.
[30]. C. Møller, H. S. Tastesen, B. Gammelgaard, I. H. Lambert, and S. Stürup,"Stability, accumulation and cytotoxicity of an albumin-cisplatin adduct,"Metallomics, vol. 2, no. 12, pp. 811-818, 2010.
[31]. F. Kratz, "Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles," Journal of controlled release, vol. 132, no. 3, pp. 171-183, 2008.
[32]. Shiying Wang, “Targeting of microbubbles - contrast agents for ultrasound molecular imaging”, J Drug Target, 2018 Jun-Jul; 26(5-6): 420–434.
[33]. Tzu-Yin Wang and Katheryne E. Wilsonet, “Ultrasound and Microbubble Guided Drug Delivery: Mechanistic Understanding and Clinical Implications”, Curr Pharm Biotechnol, 2014 Oct; 14(8): 743–752.
[34]. 陳思嘉, "靶向超音波於血栓溶解之研究," 臺灣大學生醫電子與資訊學研究所學位論文, pp. 1-64, 2009.
[35]. Yuhang Tian and Zhao Liu et al.,“New Aspects of Ultrasound-Mediated Targeted Delivery and Therapy for Cancer”, Int J Nanomedicine,2020 Jan 21; 15: 401–418.
[36]. Heleen Dewitte, “Theranostic mRNA-loaded Microbubbles in the Lymphatics of Dogs: Implications for Drug Delivery”, Theranostics, 2015; 5(1): 97–109.
[37]. Conor McEwan and Sukanta Kamila et al., “Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle”, Biomaterials, 2016 Feb;80:20-32.
[38]. M. J. Borrelli et al., "Production of uniformly sized serum albumin and dextrose microbubbles," Ultrasonics sonochemistry, vol. 19, no. 1, pp. 198-208, 2012.
[39]. X. Zhu et al., "Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles," Scientific reports, vol. 6, no. 1, pp. 1-12, 2016.
[40]. S. Tinkov, R. Bekeredjian, G. Winter, and C. Coester, "Microbubbles as ultrasound triggered drug carriers," Journal of pharmaceutical sciences, vol. 98, no. 6, pp. 1935-1961, 2009.
[41]. Reusser TD, Song KH, Ramirez D, Benninger RK, Papadopoulou V, Borden MA. Phospholipid Oxygen Microbubbles for Image-Guided Therapy. Nanotheranostics. 2020 Feb 28;4(2):83-90.
[42]. S. M. Fix et al., "Oxygen microbubbles improve radiotherapy tumor control in a rat fibrosarcoma model–A preliminary study," PLoS One, vol. 13, no. 4, p. e0195667, 2018.
[43]. Swanson EJ, Borden MA. Injectable oxygen delivery based on protein-shelled microbubbles. Nano LIFE. 2010 1(3):215-218.
[44]. Ho YJ, Cheng HL, Liao LD, Lin YC, Tsai HC, Yeh CK. Oxygen-loaded microbubble-mediated sonoperfusion and oxygenation for neuroprotection after ischemic stroke reperfusion. Biomater Res. 2023 Jul 6;27(1):65.
[45]. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009 Jul;8(7):579-91. doi: 10.1038/nrd2803. Epub 2009 May 29. PMID: 19478820.
[46]. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004 Jul;10 Suppl:S18-25.
[47]. Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Adv Pharmacol Sci. 2011;2011:572634.
[48]. Paravicini TM, Touyz RM. Redox signaling in hypertension. Cardiovasc Res. 2006 Jul 15;71(2):247-58.
[49]. Haigis MC, Yankner BA. The aging stress response. Mol Cell. 2010 Oct 22;40(2):333-44.
[50]. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science.
[51]. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012 May;24(5):981-90.
[52]. Dejan Arzenšek, “Dynamic light scattering and application to proteins in solutions”, Dynamic light scatterimg theory, 2-18, 2010.
[53]. Knight and Frank B. et al., “On the random walk and Brownian motion”, Transactions of the American Mathematical Society., 103 (2): 218.
[54]. Ling Li1 and Xia Li1 et al., “Multifunctional Nucleus-targeting Nanoparticles with Ultra-high Gene Transfection Efficiency for In Vivo Gene Therapy”, Theranostics, 2017; 7(6):1633-1649.
[55]. 楊粉榮、文洪杰、鍾勤, "幾種粒徑量測定方法比較," Physics Examination and Testing, 2005.
[56]. COULTER COUNTER® (Multisizer™)儀器使用操作手冊.
[57]. Jisha S. Lal, Divya Radha, K.S. Devaky,Drug release studies of metformin hydrochloride from chitosan - Mango leaf extract microspheres,Journal of Drug Delivery Science and Technology,Volume 84,2023,104524, 1773-2247
[58]. Ebrahimi H, Kazem Nezhad S, Farmoudeh A, Babaei A, Ebrahimnejad P, Akbari E, Siahposht-Khachaki A. Design and optimization of metformin-loaded solid lipid nanoparticles for neuroprotective effects in a rat model of diffuse traumatic brain injury: A biochemical, behavioral, and histological study. Eur J Pharm Biopharm. 2022 Dec;181:122-135.
[59]. OxyLiteTM Continuous in vivo and in vitro combined pO2 and temperature monitoring User MANUAL
[60]. Sephra N. Rampersad, “Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays”, Sensors (Basel), 2012; 12(9): 12347–12360.

無法下載圖示 全文公開日期 2026/01/23 (校內網路)
全文公開日期 2026/01/23 (校外網路)
全文公開日期 2026/01/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE