研究生: |
吳伯恩 Bo-En Wu |
---|---|
論文名稱: |
FeOx/BiVO4異質結構光化學電池與水分解之應用 Photochemical Metal Organic Deposition of FeOx Catalyst on BiVO4 for Improving Solar-Driven Water Oxidation Efficiency |
指導教授: |
江佳穎
Chia-Ying Chiang |
口試委員: |
戴龑
Yian Tai 蔡大翔 Dah-Shyang Tsai |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 化學工程系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 光電化學電池 、水分解 、光化學有機金屬沉積法 |
外文關鍵詞: | Photoelectrochemical water splitting, photochemical metal-organic deposition, metal oxide catalyst |
相關次數: | 點閱:658 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用太陽能分解水乃是一種替代能源方案的方法,而其中光電化學電池為具有非常高潛力的方法,在所有光電極材料中BiVO4光電極擁有需多光電化學電池優良的特性,例如:符合水分解所需的價帶邊界範圍、狹小的能隙、在中性電解液中具有良好的穩定性等,但BiVO4本身仍具有一項非常大的缺點需要改進,就是與水間的動力學效應非常差,因此本實驗致力於改善這項缺點。
在本實驗中選用光化學有機金屬沉積法(Photochemical metal organic deposition, PMOD),做為將金屬氧化物FeOx覆蓋於BiVO4光電極的方法,此方法不需要使用高溫、高壓及冗長的加熱時間,因此不會造成過多的能量消耗。從本實驗結過中可以發現,當覆蓋濃度太低時能夠提供的觸媒活性點相對較少,但當濃度太高時會產生光遮蔽作用,因此使用重量百分濃度為5 wt% 的iron (Ⅲ)2-ethylhexanoate製備FeOx時具有最好的效果,在施加偏壓為1.3 V vs. RHE時,光電流密度可達1.1 mA/cm2,大於原先BiVO4光電極的2.2倍,並且反應起始電位也從原先的0.65 V降到0.3 V vs. RHE,同時發現當使用PMOD法覆蓋FeOx於BiVO4光電極表面時具有保護電極表面的作用,透過計時電位法測定將反應電流固定在0.3 mA下維持2 h,其單一BiVO4光電極之電壓上升幅度約為5 wt%的iron (Ⅲ)2-ethylhexanoate塗佈所製備的FeOx/BiVO4光電極上升幅度的12倍,最後由吸收光光電子轉化效率(APCE)測試結果中得知,當入色光波長為445 nm時使用5 wt%的iron (Ⅲ)2-ethylhexanoate塗佈所製備的FeOx/BiVO4光電極其APCE效率值可達到45.5%。
Serving as a photoelectrochemical water splitting material, monoclinic BiVO4 satisfies many requirements for a highly active photoanode, such as moderate band gap (2.55eV), favorable chemical and photoelectrochemical stability, low overpotential for oxygen evolution reaction. However, it suffers from a key drawback: the slow kinetics of photon-generated charge carrier reacting with water molecules. Therefore, a layer of metal oxide oxygen evolution reaction catalyst, preparing by photochemical metal-organic deposition (PMOD), was introduced on the BiVO4 photoanode surface to enhance the efficiency of photoelectrochemical water splitting reaction.
In this study, amorphous iron oxide catalyst was deposited on the BiVO4 photoanode. It is found that there is an optimal thickness for the metal oxide catalyst due to the competition between the light sheltering effect of this catalyst layer and the amount for catalyst for reaction. With the introduction of this catalyst layer, the photocurrent density increases about two times, i.e. from 0.5 mA/cm2 for BiVO4 alone to 1.2 mA/cm2 for FeOx/BiVO4 at 1.3 V vs. RHE.
[1] H. Graßl, J. Kokott, M. Kulessa, J. Luther, F. Nuscheler, R. Sauerborn, H. Schellnhuber, R. Schubert, E. Schulze, World in transition, Towards Sustainable Energy Systems. German Advisory Council on Global Change (WBGU), Germany. (2004).
[2] G.R. Timilsina, L. Kurdgelashvili, P.A. Narbel, Solar energy: Markets, economics and policies, Renewable and Sustainable Energy Reviews. 16 (2012) 449-465.
[3] 胡湘玲, 太陽能源 Our Energy Future-Powered by the Sun, 出版者: 天下遠見出版股份有限公司 (2009).
[4] Y.-L. Chien, The Study of Converting CuO Nano-particles From the Waste Water of PCB Factory For Water Splitting Reaction, (2015).
[5] D.M. Chapin, C. Fuller, G. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics. 25 (1954) 676-677.
[6] 李權倍, 奈米多孔性二氧化鈦光電極微結構設計在量子點敏化太陽能電池的應用, 成功大學化學工程學系學位論文 (2007) 1-86.
[7] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, nature. 238 (1972) 37-38.
[8] J.H. Kim, J.S. Lee, BiVO4-based heterostructured photocatalysts for solar water splitting: a review, Energy and Environment Focus. 3 (2014) 339-353.
[9] C.J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, Nanocrystalline titanium oxide electrodes for photovoltaic applications, Journal of the American Ceramic Society. 80 (1997) 3157-3171.
[10] W. Shen, W. Zhao, F. He, Y. Fang, TiO2-Based Photocatalysis and Its Applications for Waste Water Treatment, PROGRESS IN CHEMISTRY-BEIJING-. 10 (1998) 349-361.
[11] P. Hoyer, H. Weller, Potential-dependent electron injection in nanoporous colloidal ZnO films, The Journal of Physical Chemistry. 99 (1995) 14096-14100.
[12] G. Redmond, A. O'Keeffe, C. Burgess, C. MacHale, D. Fitzmaurice, Spectroscopic determination of the flatband potential of transparent nanocrystalline zinc oxide films, The journal of physical chemistry. 97 (1993) 11081-11086.
[13] G. Hodes, I. Howell, L. Peter, Nanocrystalline photoelectrochemical cells a new concept in photovoltaic cells, Journal of the Electrochemical Society. 139 (1992) 3136-3140.
[14] T. Torimoto, S. Nagakubo, M. Nishizawa, H. Yoneyama, Photoelectrochemical properties of size-quantized CdS thin films prepared by an electrochemical method, Langmuir. 14 (1998) 7077-7081.
[15] T. Torimoto, N. Tsumura, M. Miyake, M. Nishizawa, T. Sakata, H. Mori, H. Yoneyama, Preparation and photoelectrochemical properties of two-dimensionally organized CdS nanoparticle thin films, Langmuir. 15 (1999) 1853-1858.
[16] S. Sakohara, L.D. Tickanen, M.A. Anderson, Luminescence properties of thin zinc oxide membranes prepared by the sol-gel technique: change in visible luminescence during firing, The Journal of Physical Chemistry. 96 (1992) 11086-11091.
[17] B. Orel, M. Maček, F. Švegl, K. Kalcher, Electrochromism of iron oxide films prepared via the sol-gel route by the dip-coating technique, Thin Solid Films. 246 (1994) 131-142.
[18] 錢新明, 呂紅輝, 張昕彤, 李英順, 白玉白, 李鐵津, 湯心頤, 無定形納米 Fe2O3 微粒的光電化學特性, 吉林大學學報 (自然科學版). 1999 (1999) 87-92.
[19] L. Xia, J. Bai, J. Li, Q. Zeng, L. Li, B. Zhou, High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application, Applied Catalysis B: Environmental. 204 (2017) 127-133.
[20] C. Nasr, S. Hotchandani, P.V. Kamat, S. Das, K.G. Thomas, M. George, Electrochemical and photoelectrochemical properties of monoaza-15-Crown ether linked cyanine dyes: Photosensitization of nanocrystalline SnO2 films, Langmuir. 11 (1995) 1777-1783.
[21] M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, John Wiley & Sons. 2001.
[22] A.L. Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical reviews. 95 (1995) 735-758.
[23] M. Grätzel, Photoelectrochemical cells, Nature. 414 (2001) 338-344.
[24] R. Roth, J. Waring, Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO4 compounds, American Mineralogist. 48 (1963) 1348-&.
[25] A.R. Lim, S.H. Choh, M.S. Jang, Prominent ferroelastic domain walls in BiVO4 crystal, Journal of Physics: Condensed Matter. 7 (1995) 7309.
[26] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121 (1999) 11459-11467.
[27] C.M. Suarez, S. Hernández, N. Russo, BiVO4 as photocatalyst for solar fuels production through water splitting: A short review, Applied Catalysis A: General. 504 (2015) 158-170.
[28] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution, Catalysis Letters. 53 (1998) 229-230.
[29] A. Bhattacharya, K. Mallick, A. Hartridge, Phase transition in BiVO4, Materials Letters. 30 (1997) 7-13.
[30] A. Galembeck, O. Alves, Bismuth vanadate synthesis by metallo-organic decomposition: thermal decomposition study and particle size control, Journal of materials science. 37 (2002) 1923-1927.
[31] S. Hu, C. Xiang, S. Haussener, A.D. Berger, N.S. Lewis, An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems, Energy & Environmental Science. 6 (2013) 2984-2993.
[32] S. Taylor, Abundance of chemical elements in the continental crust: a new table, Geochimica et cosmochimica acta. 28 (1964) 1273-1285.
[33] Y. Ma, S.R. Pendlebury, A. Reynal, F. Le Formal, J.R. Durrant, Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation, Chemical Science. 5 (2014) 2964-2973.
[34] T.S. Sinclair, B.M. Hunter, J.R. Winkler, H.B. Gray, A.M. Müller, Factors affecting bismuth vanadate photoelectrochemical performance, Materials Horizons. 2 (2015) 330-337.
[35] F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, R. van de Krol, The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity Study, The Journal of Physical Chemistry Letters. 4 (2013) 2752-2757.
[36] P. Chatchai, Y. Murakami, S.-y. Kishioka, A. Nosaka, Y. Nosaka, FTO∕SnO2∕BiVO4 composite photoelectrode for water oxidation under visible light irradiation, Electrochemical and Solid-State Letters. 11 (2008) H160-H163.
[37] S.K. Pilli, T.G. Deutsch, T.E. Furtak, L.D. Brown, J.A. Turner, A.M. Herring, BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation, Physical Chemistry Chemical Physics. 15 (2013) 3273-3278.
[38] R. Saito, Y. Miseki, K. Sayama, Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte, Chemical Communications. 48 (2012) 3833-3835.
[39] S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy & Environmental Science. 4 (2011) 1781-1787
[40] P. Chatchai, Y. Murakami, S.-y. Kishioka, A.Y. Nosaka, Y. Nosaka, Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation, Electrochimica Acta. 54 (2009) 1147-1152.
[41] P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, X. Zheng, Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation, Nano letters. 14 (2014) 1099-1105.
[42] J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting, Nano letters. 11 (2011) 1928-1933.
[43] S.P. Berglund, A.J. Rettie, S. Hoang, C.B. Mullins, Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation, Physical Chemistry Chemical Physics. 14 (2012) 7065-7075.
[44] W. Luo, Z. Li, T. Yu, Z. Zou, Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo-doped BiVO4, The Journal of Physical Chemistry C. 116 (2012) 5076-5081.
[45] W.J. Jo, J.W. Jang, K.j. Kong, H.J. Kang, J.Y. Kim, H. Jun, K. Parmar, J.S. Lee, Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity, Angewandte Chemie International Edition. 51 (2012) 3147-3151.
[46] K.P.S. Parmar, H.J. Kang, A. Bist, P. Dua, J.S. Jang, J.S. Lee, Photocatalytic and Photoelectrochemical Water Oxidation over Metal‐Doped Monoclinic BiVO4 Photoanodes, ChemSusChem. 5 (2012) 1926-1934.
[47] H.W. Jeong, T.H. Jeon, J.S. Jang, W. Choi, H. Park, Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance, The Journal of Physical Chemistry. C 117 (2013) 9104-9112.
[48] H. He, S.P. Berglund, A.J. Rettie, W.D. Chemelewski, P. Xiao, Y. Zhang, C.B. Mullins, Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation, Journal of Materials Chemistry. A 2 (2014) 9371-9379.
[49] S.M. Thalluri, C. Martinez Suarez, M. Hussain, S. Hernandez, A. Virga, G. Saracco, N. Russo, Evaluation of the parameters affecting the visible-light-induced photocatalytic activity of monoclinic BiVO4 for water oxidation, Industrial & Engineering Chemistry Research. 52 (2013) 17414-17418.
[50] B. Pattengale, J. Ludwig, J. Huang, Atomic insight into the W-doping effect on carrier dynamics and photoelectrochemical properties of BiVO4 photoanodes, The Journal of Physical Chemistry. C 120 (2016) 1421-1427.
[51] Y. Park, D. Kang, K.-S. Choi, Marked enhancement in electron–hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes, Physical Chemistry Chemical Physics. 16 (2014) 1238-1246.
[52] D. Wang, R. Li, J. Zhu, J. Shi, J. Han, X. Zong, C. Li, Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst, The Journal of Physical Chemistry. C 116 (2012) 5082-5089.
[53] F.F. Abdi, N. Firet, R. van de Krol, Efficient BiVO4 thin film photoanodes modified with Cobalt Phosphate catalyst and W‐doping, ChemCatChem. 5 (2013) 490-496.
[54] D.K. Zhong, S. Choi, D.R. Gamelin, Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4, Journal of the American Chemical Society. 133 (2011) 18370-18377.
[55] F.F. Abdi, L. Han, A.H. Smets, M. Zeman, B. Dam, R. Van De Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nature communications. 4 (2013) 2195.
[56] T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storage for the legacy and nonlegacy worlds, Chemical reviews. 110 (2010) 6474-6502.
[57] T.H. Jeon, W. Choi, H. Park, Cobalt–phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes, Physical Chemistry Chemical Physics. 13 (2011) 21392-21401.
[58] E.S. Kim, H.J. Kang, G. Magesh, J.Y. Kim, J.-W. Jang, J.S. Lee, Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation, ACS applied materials & interfaces. 6 (2014) 17762-17769.
[59] K.R. Tolod, S. Hernández, N. Russo, Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: Top-performing photoanodes and scale-up challenges, Catalysts. 7 (2017) 13.
[60] H.-H. Park, S.-B. Jung, H.-H. Park, T.S. Kim, R.H. Hill, Electrical and ferroelectric properties of SBT thin films formed by photochemical metal-organic deposition, Sensors and Actuators B: Chemical. 126 (2007) 289-293.
[61] P.W. Boumans, Theory of spectrochemical excitation, Springer Science & Business Media. 2012.
[62] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, physica status solidi. (b) 15 (1966) 627-637.
[63] J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz Jr, Density-functional theory for fractional particle number: derivative discontinuities of the energy, Physical Review Letters. 49 (1982) 1691.
[64] K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe, H. Sugihara, Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment, The Journal of Physical Chemistry. B 110 (2006) 11352-11360.
[65] V.-I. Merupo, S. Velumani, K. Ordon, N. Errien, J. Szade, A.-H. Kassiba, Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4), CrystEngComm. 17 (2015) 3366-3375.
[66] J. Su, X.-X. Zou, G.-D. Li, X. Wei, C. Yan, Y.-N. Wang, J. Zhao, L.-J. Zhou, J.-S. Chen, Macroporous V2O5− BiVO4 composites: effect of heterojunction on the behavior of photogenerated charges, The Journal of Physical Chemistry. C 115 (2011) 8064-8071.
[67] H. Liu, R. Nakamura, Y. Nakato, Promoted photo-oxidation reactivity of particulate BiVO4 photocatalyst prepared by a photoassisted sol-gel method, Journal of the Electrochemical Society. 152 (2005) G856-G861.
[68] T. Li, J. He, B. Peña, C.P. Berlinguette, Curing BiVO4 photoanodes with ultraviolet light enhances photoelectrocatalysis, Angewandte Chemie International Edition. 55 (2016) 1769-1772.