簡易檢索 / 詳目顯示

研究生: 莊博翔
PO-Hsiang Chuang
論文名稱: 2,3-二羥基喹喔啉與鈷金屬配位聚合物之自組裝合成、結構及磁性研究
Self-assembly, Structures and Magnetic Properties of Cobalt (II) Coordination Polymer with 2,3-Dihydroxyquinoxaline Ligand
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 呂光烈
Kuang-Leih Lu
林 英 智
Ying-Chih Lin
劉陵崗
Ling-Kang Liu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 150
中文關鍵詞: 23-二羥基喹喔啉自組裝金屬-有機配位聚合物單鏈磁鐵自旋玻璃對掌性原位反應
外文關鍵詞: 3-dihydroxyquinoxaline, metal – organic coordination complexes, single-chain magnet, spin-glass chiral
相關次數: 點閱:205下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨趣為研究鈷二價金屬離子與2,3-二羥基喹喔啉(2,3-dihydroxyquinoxaline ; H2L)配子之水熱自組裝反應,製備金屬-有機配位磁性材料(metal–organic coordination magnetic materials)。

本論文研究共合成六種配位化合物(coordination complexes),分別為[Co(HL)(OAc)]n (1), [Co4(L)2(O2CPh)2(OMe)2(MeOH)2]n (2), [Co(HL)2(O2CPh)] (3), [Co(L’)2(O2H)] (4), [Co3(Btz)2(D-cam)2]n (5),和 [Co2(BzIm)4(D-cam)2]n (6)。論文分成兩部分探討,第一部分為經由2,3-二羥基喹喔啉展現出多種不同的配位模式,自組裝形成配位聚合物14。化合物1為一維鏈狀結構、化合物2為二維的平面層狀結構,化合物3、4為零維單體結構,其中化合物3是以鈷三價為金屬中心。並進一步探討其晶體結構特性、熱穩定性及其他物性的鑑定分析。在第二部分,化合物56 是經由2,3-二羥基喹喔啉和具有對掌性的配子D(+) -樟腦酸進行水熱自組裝反應。有趣的是,在化合物56中分別得到兩種無法預期的配子苯并三氮唑(benzotriazole ; Bta) 和苯并咪唑(benzimidazole ; BzIm) 均由2,3-二羥基喹喔啉(H2L)水解進行原位反應(in situ reaction)轉變所得到,並參與金屬配位而生成化合物5與6,於是導致分別具有對掌性的二維及一維結構的空間群(space group)。並進一步探討其晶體結構特性、熱穩定性及其他物性的鑑定分析。

另外,我們也著重在化合物1, 2, 5的磁性研究。化合物1在直流磁化率(DC magnetic susceptibility)量測下,得知該化合物呈現反鐵磁性(antiferromagnetic)行為,但在低溫下磁化率展現弱鐵磁作用力(weak ferromagnetic interaction),由零磁場-磁場冷卻(ZFC-FC plot)、磁滯迴路及交流磁化率(AC magnetic susceptibility)的量測,證明化合物1是具有spin canting antiferromagnetic的單鏈磁鐵(single-chain magnet); 化合物2在直流磁化率,及零磁場-磁場冷卻(ZFC-FC plot)量測數據皆顯示化合物2在12 K以下有分歧的現象,其磁滯迴路亦可於10 K時被量測到。由磁滯迴路及交流磁化率證實化合物2是由spin canting antiferromagnetic造成自旋玻璃(spin-glass)行為; 化合物5在直流磁化率量測下得知該化合物呈現反鐵磁性(antiferromagnetic)行為。

關鍵字 : 2,3-二羥基喹喔啉、自組裝、金屬-有機配位聚合物、單鏈磁鐵、
自旋玻璃、對掌性、原位反應


In this thesis, 2,3-dihydroxyquinoxaline (H2L) was chosen as a ligand to react with Co2+ metal ion under hydrothermal conditions to prepare metal – organic coordination magnetic materials.

Six coordination complexes, [Co(HL)(OAc)]n (1), [Co4(L)2(O2CPh)2(OMe)2(MeOH)2]n (2), [Co(HL)2(O2CPh)] (3), [Co(L’)2(OH2)] (4), [Co3(Btz)2(D-cam)2]n (5), and [Co2(BzIm)4(D-cam)2]n (6) were successfully synthesized. In the first part of this thesis, four Co-based complexes, 14 were synthesized by using 2,3-dihydroxyquinoxaline of various coordination modes. Complex 1 adopted a one-dimensional single-chain structure. Complex 2 represents a 2D layer structure. Complexes 3 and 4 were discrete molecules. In particular, the Co metal center in 3 is trivalent. Furthermore, the structures, thermal stability, and physical properties of complexes 14 were discussed. In the second part of this thesis, two Co(II) based complexes 56 were synthesized by 2,3-dihydroxyquinoxaline and chiral ligand D - camphoric acid under hydrothermal conditions. Interestingly, two different ligands benzotriazole (Bta) and benzimidazole (BzIm) were unexpectedly generated in situ reaction from hydrolysis of 2,3-dihydroxyquinoxaline (H2L). Bta and BzIm coordinate with cobalt to form 5 with 2D architecture and 6 with 1D architecture, respectively, and both of which have chiral space group. Furthermore, the structures, thermal stability, and physical properties of complexes 56 were discussed.

Moreover, we focused on the magnetic properties of complexes 1, 2, and 5. In complex 1, results from DC magnetic susceptibility measurement revealed that spin-canted antiferromagnetic interactions within the CoII ions. The susceptibility also showed weak ferromagnetic interaction at low temperature. In addition, the ZFC-FC magnetization and hysteresis loop data confirmed that 1 exhibits single chain magnet of antiferromagnetic spin-canting behavior at low temperature.

Complex 2, its DC magnetic susceptibility, ZFC-FC magnetization were also studied. These data indicated the divergence phenomenon of 2 below 12 K. The hysteresis loop of magnetization vs field at 10 K could also be observed. According to the AC magnetic susceptibility and hysteresis loop, we further confirmed that spin-glass behavior of 2 from spin-canting magnetic interaction. In complex 5, results from DC magnetic susceptibility measurement revealed that antiferromagnetic interactions within the CoII ions.

謝誌……………………………………………………………………………………I 中文摘要……………………………………………………………………………...II Abstract……………………………………………………………………………...III Contents………………………………………………………………………....….VI List of Figures……………………………………………………………………..VIII List of schemes………………………………………………………………….... XIII List of Tables……………………………………………………………………....XIV Chapter 1 Introduction………………………………………………………………1 § 1-1. Supramolecular Chemistry and Self – Assembly…………………………...1 § 1-2. Metal - Organic Coordination Polymer………………………………........7 § 1-3. Main types of magnetism………………………………………………….12 § 1-4. Magnetic Metal-Organic Framework……………………………………...17 § 1-5. Synthesis method………………………………………………………….22 Chapter 2 Design Principles………………………………………………………..24 Chapter 3 Experiment Section……………………………………………………..28 § 3-1-1. Instrument…………………………………………………………….....28 § 3-1-2. Chemical……………………………………………………………..….29 § 3-2. Synthesis of metal-organic coordination magnetic material by Solvothermal method…………………………………………………...30 Chapter 4 Results and Discussion………………………………………………….34 § 4-1-1. Crystal structure description and discussion of [Co(HL)(OAc)]n (1)…...34 § 4-1-2. Magnetic properties of [Co(HL)(OAc)]n (1)……………………………40 § 4-2-1. Crystal structure description and discussion of [Co4(L)2(O2CPh)2(OMe)2(MeOH)2]n (2)…………………..………...…48 § 4-2-2. Magnetic properties of [Co4(L)2(O2CPh)2(OMe)2(MeOH)2]n (2)……....53 § 4-3-1. Crystal structure description and discussion of [Co(HL)2(OOCPh)] (3)..59 § 4-4-1. Crystal Structure description and discussion of [Co(L’)2(OH2)] (4)……62 § 4-5-1. Crystal Structure description and discussion of [Co3(Bta)2(D-cam)2]n (5)………………………………………….…66 § 4-5-2. Magnetic properties of [Co3(Bta)2(D-cam)2]n (5)……………………..71 § 4-6-1. Crystal Structure description and discussion of [Co2(BzIm)4(D-cam)2]n (6)……………………………………………74 Chapter 5 Conclusion and Perspective…………………………………………....80 References…………………………………………………………………………...81 Appendix…………………………………………………………………………….85

1. Lehn, J. M. Nobel lecture 1987.
2. Lehn, J. M. Proc. Natl. Acad. Sci. 2002, 99, 4763.
3. (a) Service, R. F.; Szuromi, P.; Uppenbrink, J. Science 2002, 295, 2395.
(b) Reinhoudt, D. T.; Crego-Calama, M. Science 2002, 295, 2403.
4. Gibb, C. L. D.; Gibb, B. C. J. Supramol. Chem. 2001, 1, 39.
5. (a) Lindoy, L. F.; Atkinson, I. M. Self-Assembly in Supramolecular
Systems; Royal Society of Chemistry: Cambridge, 2000. (b) Antonio, B.; Kristin, B. J.; Enrique, G. E. The Supramolecular Chemistry of Anions; Wiley-VCH: New York, 1997. (c) Steiner T. Angew. Chem. Int. Ed. 2002, 41, 48. (d) Muller, P. Pure & Appl. Chem. 1994, 66, 1077. (e) Christoph, J. J. Chem. Soc., Dalton Trans. 2000, 3885.
6. Yoshizawa, M.; Tamura, M.; Fujita, M. Science 2006, 312, 251.
7. (a) Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle, K.; Pastre, J. J. Mater. Chem. 2006, 16, 626. (b) Hamon, L.; Serre, C.; Devic, T.; Loiseau, T.; Millange, F.; Ferey, G.; De Weireld, G. J. Am. Chem. Soc. 2009, 131, 8775.
8. Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
9. (a) Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248. (b) Lee, J. Y.;
Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev.2009, 38, 1450.
10. (a) Yan, X.; Liu, G.; Haeussler, M.; Tang, B. Z. Chem. Mater. 2005, 17, 6053.
(b)Shi, J. M.; Sun, Y. M.; Zhang, X.; Yi, L.; Cheng, P.; Liu, L. D. J. Phys. Chem. A. 2006, 110, 7677. (c) Lopez, N.; Vos, T. E.; Arif, A. M.; Shum, W. W.; Noveron, J. C.; Miller, J. S. Inorg. Chem. 2006, 45, 4325.
11. Prakash, M. J.; Radhakrishnan, T. P. Chem. Mater. 2006, 18, 2943.
12. Kosaka, Y.; Yamamoto, H. M.; Nakao, A.; Tamura, M.; Kato, R. J. Am. Chem. Soc. 2007, 129, 3054.
13. (a) Leininger, S.; Olenyuk, B.; Stang, P. J Chem.Rev. 2000, 100, 853(b)Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem. Int. Ed. 2004, 43, 2334.
14. Perry, J. J.; Perman, J. A.; Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400.
15. Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.
16. Soma, T.; Yuge, H.; Iwamoto, T. L. Inorg. Chem. 1997, 36, 4292.
17. Ino, I.; Zhong, J. C.; Munakata, M.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y.
Inorg. Chem. 2000, 39, 4273.
18. Biradha, K.; Hongo, Y.; Fujita, M. Angew. Chem. Int. Ed. 2000, 38, 3843.
19. Zaworotako, M. J. Chem. Commun. 2001, 29, 1.
20. Uemura, K.; Kitagawa, S.; Fukui, K.; Saito, K. J. Am. Chem. Soc. 2004, 126, 3817.
21. Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. Chem. Commun.1994, 2755.
22. Yaghi, O. M.; Li, H. J. Am. Chem. Soc. 1995, 117, 10401.
23. Gruselle, M.; Train, C.; Boubekeur, K.; Gredin, P.; Ovanesyan, N. Coord. Chem. Rev. 2006, 250, 2491.
24. (a) Darriet, J.; Haddad, M. S.; Duesler, E. N.; Hendrickson, D. N.; Inorg. Chem. 1979, 18, 2679 (b) Bordallo, H. N.; Chapon, L.; Manson, J. L.; Velasco, J. H.; Ravot, D.; Reiff, W. M.; Argyriou, D. N. Phys. Rev. B, 2004, 69, 224405 (c) Manson, J. L.; Conner, M. M.; Schlueter, J. A. Lancaster, T.; Blundell, S. J.; Brooks, M. L. Pratt, F. L. Papageorgiou, T.; Bianchi, A. D.; Wosnitza, J.; Wangbo, M. H. Chem. Commun. 2006, 4894.
25. (a) Miller, J. S.; Epstein, A. J. Coord. Chem. Rev. 2000, 206. (b) Kaim,W.; Moscherosch, M. Coord. Chem. Rev. 1994, 129, 157.
26. (a) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141. (b) Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: Oxford, 2006. (C) Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. MRS Bull. 2000, 25, 66. (D) Gatteshi, D.; Sessoli, R. Angew. Chem. Int. Ed. 2003, 42, 268.; Angew. Chem. Int. Ed. 2003, 115, 278.
27. (a) Caneschi, A.; Gatteschi, D.; Lalioti, N.; Sangregorio, C.; Sessoli, R.; Venturi, G.; Vindigni, A.; Rettori, A. Pini, M. G.; Novak, M. A.; Angew. Chem. Int. Ed. 2001, 40, 1760. (b) Glauber, R. J.; J. Math, Phys. 1963, 4, 294.
28. Cle´rac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. J. Am .Chem. Soc. 2002, 124, 12837.
29. Palii, A.V.; Reu, O. S. Ostrovsky, S. M. Klokishner, S. I. Tsukerblat, B. S.; Sun, Z. M.; Mao, J.G.; Prosvirin, A. V.; Zhao, H.H. Dunbar, K. R. J. Am .Chem. Soc. 2008, 130, 14729.
30. Gao, E. Q.; Liu, P. P.; Wang, Y. Q.; Yue, Q.; Wang, Q. L. Chem. Eur. J. 2009, 15,
1217.
31. Walton, R. I. Chem. Soc. Rev. 2002, 31, 230.
32. (a) Chen, Q.; Zeng, M. H.; Zhou, Y. L.; Zou, H. H.; Kurmoo, M. Chem. Mater. 2010, 22, 2114. (b) Stamatatos, T. C.; Abboud, K. A.; Wernsdorfer,W.; Christou, G. Inorg. Chem .2009, 48, 807. (c) Xie,Y.; Ni, Jia.; Zheng, F.; Cui, Y.; Wang, Q.; Ng, S. W.; Zhu, W. Cryst Growth & Des. 2009, 9, 119.
33. (a) Bodini, M. E.; Valle, M. A.; Copia, G. E. and Soto, C. polyhedron 1998, 17, 2109. (b) Krishnamurthy, M.; Iyer, K. A.; Dorga, S. K. J. Photochem. 1983, 23, 193.
34. Konidaris, K. F.; Perlepes, S. P.; Aromi, G.; Teat, S. J.; Escuer, A.; Manessi-Zoupa, E. Inorg. Chem. Commun. 2008, 11, 186.
35. Svensson, C. Acta Chem. Scand. B. 1976, 30, 581.
36. J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, 1964.
37.( a) Nakatsuji, S.; Nambu, Y.; Tonomura, H.; Sakai, O.; S. Jonas, Broholm, C.; Tsunetsugu, H.; Qiu, Y.; Maeno, Y. Science 2005, 309,1697. (b) Lee, S. H.; Broholm, C.; Ratcliff, C.; Gasparovic, G.; Huang, Q.; Kim, T. H.; Cheong, S.W. Nature 2002, 418, 856. (c) Bramwell, S. T.; Gingras, M. J. P. Science 2001, 294, 1495. (d) Snyder, J.; Slusky, J. S.; Cava, R. J.; Schiffer, P. Nature 2001, 413, 48.
38. Humphrey, S. M.; Wood, P. T. J. Am. Chem. Soc. 2004, 126, 13236.
39. (a) Chibotaru, L. F.; Ungur, L.; Aronica, C. Elmoll, H.; Pilet, G.; Luneau, D.; J. Am. Chem. Soc. 2008, 130, 12445. (b) Zhang, Y. Z.; Wernsdorfer, W.; Pan, F.; Wang, Z. M.; Gao, S. Chem. Commun. 2006, 3302.
40. (a) Coronado, E.; Gala´n-Mascaro´s, J.; Martí-Gastaldo, Carlos. J. Am. Chem. Soc. 2008, 130, 14987. (b) Ouellette, W.; Prosvirin, A. V.; Whitenack, K.; Dunbar, K. R.; Zubieta, Jon. Angew. Chem. Int. Ed. 2009, 48, 2140. (c) Zhang, X. M.; Hao, Z. M.; Zhang,W.X.; Chen, X. M. Angew. Chem. Int. Ed. 2007, 46, 3456. (d) Zheng, Y.Z.; Tong, M.L.; Zhang, W. X.; Chen, X. M. Angew. Chem. Int. Ed. 2006, 45, 6310.
41. (a) Miller, J. S.; Drillon, M. Magnetism to Materials V; Willey-VCH: Weinheim, Germany, 2005, pp 347-377. (b) Rueff, J.-M.; Paulsen, C.; Souletie, J.; Drillon, M.; Rabu, P. J. Solid State Chem. 2005, 7, 431. (c) Rueff, J.-M.; Masciocchi, N.; Rabu, P.; Sironi, A.; Skoulios, A. Chem. Eur. J. 2002, 8, 1813.
42. (a) Kahn, O. Molecular Magnetism, VCH, Weinheim, Germany 1993; (b) Carlin, R. L.; van Duyneveldt, A. J. Magnetic Properties of TransitionMetal Compounds, Springer, New York 1977.
43. Ed. de Jongh, L. J. Magnetic Properties of Layered Transition Metal Compounds; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990.
44. (a) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141. (b) Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: Oxford, 2006. (c) Caneschi, A.; Gatteschi, D.; Lalioti, N.; Sangregorio, C.; Sessoli, R.; Venturi, G.; Vindigni, A.; Rettori, A.; Pini, M. G.; Novak, M. A. Angew. Chem. Int. Ed. 2001, 40, 1760.
45. (a) Cle´rac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. J. Am. Chem. Soc. 2002, 124, 12837. (b) Coulon, C.; Miyasaka, H.; Cle´rac, R. Struct. Bonding (Berlin) 2006, 122, 163. (c) Bernot, K.; Bogani, L.; Caneschi, A.; Gatteschi, D.; Sessoli, R. J. Am. Chem. Soc. 2006, 128, 7947. Bernot, K.; Bogani, L.; Sessoli, R.; Gatteschi,
D. Inorg. Chim. Acta 2007, 360, 3807.
46. (a) Zheng, Y. Z.; Tong, M. L.; Zhang, W. X.; Chen, X. M.; Angew. Chem., Int. Ed. 2006, 45, 6310. (b) Pardo, E.; Ruiz-Garcia, R.; Lloret, F.; Faus, J.; Julve, M.; Journaux, Y.; Novak, M. A.; Delgado, F. S.; Ruiz-Perez, C. Chem. Eur. J. 2007, 13, 2054.
47.(a) Sun, Z.-M.; Prosvirin, A. V.; Zhao, H.-H.; Mao, J.-G.; Dunbar, K. R. J. Appl. Phys. 2005, 97, 10B305. (b) Liu, X.-T.; Wang, X.-Y.; Zhang, W.-X.; Cui, P.; Gao, S. Adv. Mater. 2006, 18, 2852. (c) Bernot, K.; Luzon, J.; Sessoli, R.; Vindigni, A.; Thion, J.; Richeter,S.; Leclercq, D.; Larionova, J.; van der Lee, A. J. Am. Chem. Soc. 2008, 130, 1619.
48. Φ= 0.01 is a typical value for a spin glass. For details, see J. A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor & Francis, London, 1993.
49. N. A. Chernova, M. Ma, J. Xiao, M. S. Whittingham, J. Breger, C. P. Grey, Chem. Mater. 2007, 19, 4682.
50. Zhang, X. M. Coord. Chem. Rev. 2005, 249, 1201.
51. Yang, Q. Feng.; Cui, X. B.; Yu, J. H.; Lu, J.; Yu, X. Y.; Zhang, X.; Xu, J. Q.; Hou, Q.; Wang, T. G. CrystEngComm 2008, 10, 1531

QR CODE