簡易檢索 / 詳目顯示

研究生: Thipwadee Klom-In
Thipwadee Klom-In
論文名稱: 以幹細胞培養液、膠原蛋白纖維基板與外源性光生物調變誘發心臟始祖細胞分化為心肌細胞之研究
Inducing Cardiomyogenic Differentiation of Cardiac Progenitor Cells by Embryonic Stem Cell Medium, Collagen Fibril Substrate, and Extrinsic Photobiomodulation
指導教授: 王孟菊
Meng-Jiy Wang
陳賜原
Szu-Yuan Chen
口試委員: 王孟菊
Meng-Jiy Wang
陳賜原
Szu-Yuan Chen
李振綱
Cheng-Kang Lee
蔡偉博
Wei-Bor Tsai
蔡曉雯
Shiao-Wen Tsai
周秀慧
Shiu-Huey Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 142
中文關鍵詞: 膠原蛋白原纖維薄膜外源光生物調節法胚胎幹細胞培養液阿扎胞苷心肌細胞分化
外文關鍵詞: Collagen fibril film, Embryonic stem cell medium (ESC), Cardiomyogenic differentiation
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

組織工程被廣泛應用於再生醫學領域,H9c2 肌母細胞常被作為研究心肌細胞的替代模型,文獻中多藉由調控培養基中的胎牛血清濃度、或是添加全反式維甲酸 (all-trans retinoic acid, RA),誘導 H9c2 分化為心肌細胞之方法。當 H9c2 分化為心肌細胞型態時會形成多核細胞,細胞增殖的能力下降。另一方面,膠原蛋白也可作為一種化學-物理方法誘導 H9c2 細胞分化,因為膠原蛋白為細胞外基質的主要成分,扮演細胞訊息傳導、貼附、和組織發育的關鍵作用 (化學方式);此外,在特定的基材以及環境中,膠原蛋白具有特殊D週期性明暗帶 (D-banding) 的結構以導引細胞貼附的方向 (物理方式)。再者,近年來外源光生物調節法 (extrinsic photobiomodulation, EPM) 也被報導是一種簡單、且可有效誘導細胞分化的方法,只需照射特定波長的雷射光於細胞,就能促進細胞分化之效率。例如:在幹細胞培養於指定的膠原蛋白微圖案,同時結合 EPM 處理可以有效地增加脂肪細胞和成骨細胞的分化。
本研究目的是將膠原蛋白纖維作為基材,並探討結合胚胎幹細胞培養液 (embryonic stem cell medium, ESM) 與EPM之誘導分化方法,以發掘 H9c2 細胞分化為心肌細胞的潛力,同時驗證 ESM 培養基對於 H9c2 細胞分化為心肌細胞的重要性。為了製備具D-banding膠原蛋白纖維基材,將膠原蛋白沉積於雲母片上,形成D-banding 的膠原蛋白纖維 (collagen fibril),再用 25 % 戊二醛 (glutaraldehyde, GA) 進行交聯以增強膠原蛋白的機械強度。另外,為了增強膠原蛋白纖維在基板上的附著性,將具 D-banding 膠原蛋白纖維轉印至官能基化的聚二甲基矽氧烷 (functionalized polydimethylsiloxane, f-PDMS) 上作為細胞貼附的基材。進而以50°C 的熱處理方式以暴露 RGD motif 在膠原蛋白纖維表面上 (CF)。將 H9c2 細胞種植於 CF 和聚乙烯培養皿 (tissue culture polystyrene, TCPS) 兩者基材上,並培養於 ESM 培養基中以 12 天為分化週期,控制組為 (1) ESM/TCPS、實驗組分別為 (2) EPM/TCPS、(3) 5-AZA (5-Azacytidine)/TCPS、(4) EPM+5-AZA/TCPS、(5) ESM/CF、(6) EPM/CF、(7) EPM+5-AZA/CF,以探討化學和物理方法對 H9c2 細胞的分化之影響。EPM則加入光敏劑 Verteporfin 以 690 nm 特定波長照射細胞以誘導 H9c2 細胞的分化為心肌細胞。
為鑑定 H9c2 細胞在 ESM 培養基中是否被誘導分化為心肌細胞,在培養時間為 12 天時,利用光學顯微鏡觀察心肌細胞之形態,以及使用即時定量聚合酶連鎖反應 (real-time PCR) 分析心肌細胞基因的表現量,例如:利用 ANP (atrial natriuretic peptide) 和 TNNT2 (troponin T type 2) 生物標記物以判斷心肌細胞的基因表現量。在相同 ESM 培養基條件環境下,比較 H9c2 細胞培養於兩者不同基材 (TCPS vs CF) 上對分化結果之影響。結果顯示,H9c2 細胞培養在膠原蛋白纖維基材 (CF) 上相較於控制組 (ESM/TCPS) 增加三倍 ANP 的基因表現量,確認 H9c2 細胞已開始進入早期心肌細胞分化階段。進一步地發現,當結合膠原蛋白纖維、5-AZA (化學因子)、和 EPM (物理因子) 等三種誘導因子,ANP 的基因表現量增加至 10 倍,由實驗結果顯示經三種誘導因子協同作用,可有效促進早期心肌細胞分化。此外,相關文獻指出 ESM 培養基可誘導纖維母細胞 (如 L929 和 3T3 fibroblasts) 分化為多潛能幹細胞 (induced pluripotent stem cells, iPSCs),本研究發現ESM 培養基對誘導心肌細胞分化方面具有顯著的效果。因此,本研究利用化學 (5-AZA)、物理 (CF)、以及光照 (EPM) 的方式提供有效增進誘導H9c2細胞分化為心肌細胞的方法,可應用於再生醫學以及組織工程學相關重要議題。


Tissue engineering has been widely applied in the field of regenerative medicine. H9c2 cardiomyoblasts are often used as an alternative model for studying cardiac muscle cells. In the literature, various methods have been employed to induce the differentiation of H9c2 cells into cardiomyocytes, such as concentration adjustment of fetal bovine serum in the culture medium and the addition of all-trans retinoic acid (RA). When H9c2 cells differentiate into a cardiomyocytes phenotype, which becomes multinucleus, the proliferative capacity decreases. On the other hand, collagen can also be used as a chemo-physical method to induce H9c2 cell differentiation. Collagen is a major component of the extracellular matrix and plays a crucial role in cell signaling, adhesion, and tissue development (chemical factor). Additionally, in specific environments, collagen exhibits a distinct periodic banding structure (D-banding) that guides direction of cell attachment (physical factor). Moreover, extrinsic photobiomodulation (EPM) has been reported as a simple and effective method to induce cell differentiation. The combination of the photosensitizer (verteporfin) and laser light irradiation with specific wavelengths applied on cells, EPM can enhance the efficiency of cell differentiation. For example, when mesenchymal stem cells (MSCs) are cultured on specific collagen micro-patterns and treated by EPM, the conjunction of EPM with micro-patterns can effectively promote the differentiation of MSCs into adipocytes and osteocytes.
The aim of this study is to use collagen fibrils as a substrate and investigate the induction of H9c2 cell differentiation into cardiomyocytes by combining embryonic stem cell medium (ESM) with EPM. Meanwhile, the importance of ESM culture medium has been proven that could induce the differentiation of H9c2 cells into cardiomyocytes. To prepare collagen fibril substrate, collagen is deposited on mica to form D-banding structure. After that, glutaraldehyde (GA) is then used for cross-linking to enhance the mechanical strength of collagen fibrils. In addition, in order to enhance the adhesion of collagen fibrils on the substrate, collagen fibrils are transferred onto functionalized polydimethylsiloxane (f-PDMS) which is a cell attachment substrate. Subsequently, collagen fibril on f-PDMS is treated by heat treatment at 50°C to expose RGD motifs on the surface of collagen fibrils (CF). H9c2 cells are seeded on both CF and tissue culture polystyrene (TCPS) substrates and incubated in ESM medium for a differentiation period time within 12 days. The control group is cultured in ESM/TCPS, while the experimental groups are (1) EPM/TCPS, (2) 5-Azacytidine (5-AZA)/TCPS, (3) EPM+5-AZA/TCPS, (4) ESM/CF, (5) EPM/CF, and (6) EPM+5-AZA/CF. The effects of chemical and physical factors on H9c2 cell differentiation are investigated.
To determine whether H9c2 cells are differentiated into cardiomyocytes in ESM medium, the morphology of cardiomyocytes is observed by optical microscope after 12 days of culture time. Quantitative real-time polymerase chain reaction (qPCR) is performed to analyze the gene expression levels of cardiomyocytes biomarker, such as atrial natriuretic peptide (ANP) and troponin T type 2 (TNNT2). Under the same ESM culture conditions, the influence of different substrates (TCPS vs. CF) on the differentiation of H9c2 cells is compared. The results show that H9c2 cells cultured on CF exhibit a three-fold increase in the expression of ANP compared to the control group (ESM/TCPS), which confirmed the initiation of early-stage cardiomyocyte differentiation. Furthermore, when the three induction factors are combined with collagen fibril, 5-AZA (chemical factor), and EPM (physical factor), the expression of ANP gene increases up to ten-fold. The experimental results demonstrate the effective promotion of early-stage cardiomyocyte differentiation through the synergistic effects of the three induction factors. Moreover, previous studies have indicated that ESM culture medium can induce the differentiation of fibroblast cells (such as L929 and 3T3 fibroblasts) into induced pluripotent stem cells (iPSCs). This study found significant effects of ESM culture medium on the induction of cardiomyocyte differentiation. Therefore, this research provides an effective method for enhancing the differentiation of H9c2 cells into cardiomyocytes through the combination of chemical (5-AZA), (CF), and physical (EPM). The method has potential to apply in the fields of regenerative medicine and tissue engineering.

摘要 I Abstract III Acknowledgments VI Contents VII List of Figures XI List of Tables XX Chapter 1 Introduction 1 1.1. Background of research 1 1.2. Research goal 2 Chapter 2 Literature Review 4 2.1. Collagen fibril film 4 2.2. Denatured-collagen fibril film 7 2.3. Photobiomodulation 9 2.4. Cardiomyocytes 12 2.5. Induce cardiomyogenic differentiation 17 2.6. Induced Pluripotency Stem Cell (iPSC) 20 Chapter 3 Experimental 22 3.1. Chemical, reagents and Experimental instruments 23 3.1.1. Chemical and reagents 23 3.1.1.1. Cell culture 23 3.1.1.2. Fluorescence staining 24 3.1.1.3. Collagen-fibril preparation 24 3.1.1.4. RNA extraction 25 3.1.1.5. cDNA template amplification 25 3.1.1.6. Real-time PCR (qPCR) 25 3.1.2. Experimental instruments 26 3.2. Experimental procedure 27 3.2.1. Preparation of collagen fibril 27 3.2.2. Functionalized PDMS (f-PDMS) preparation 28 3.2.3. Cross-linked collagen-fibril and transfer fibril film to f-PDMS 29 3.2.4. Deactivation of aldehyde functional groups by NaBH4 31 3.2.5. Cell culture 31 3.2.6. Induction of differentiation of H9c2 by chemical factor 32 3.2.7. Induction of differentiation of H9c2 by embryonic stem cell medium 32 3.2.8. Promotion differentiation of H9c2 by extrinsic photobiomodulation (EPM) 33 3.2.9. Immunostaining by cardiomyogenic marker 34 3.2.10. Quantitative Polymerase Chain Reaction (qPCR) for and cardiomyogenic markers 35 3.2.10.1. Total RNA extraction 35 3.2.10.2. cDNA template synthesis 36 3.2.10.3. Quantitative Polymerase Chain Reaction (qPCR) 37 3.2.11. Statistical analyses 39 3.3. Principles and Methods of analytical instruments 40 3.3.1. Water contact angle (WCA) 40 3.3.2. Optical microscope (OM) 42 3.3.3. Fluorescence microscope 43 3.3.4. Confocal microscope 45 3.3.5. Immunohistochemistry (IHC) 47 3.3.6. NanoDrop 50 3.3.7. Quantitative Polymerase Chain Reaction (qPCR) 52 Chapter 4 Results and Discussion 53 4.1. Preparation of collagen fibril on functionalized PDMS 54 4.1.1. Preparation of d-collagen fibril on the f-PDMS substrate 54 4.1.2. Optimization of contact printing time and the volume of water on the surface of contact printing 55 4.1.3. Enhancing cell attachment through NaBH4 quenching and heat treatment of collagen fibrils 57 4.2. Induction of differentiation of H9c2 by chemical factor, collagen fibril substrate and extrinsic photobiomodulation 62 4.3. Induced cardiomyogenic differentiation by embryonic stem cell medium (ESM) 68 4.3.1. The effects of embryonic stem cell medium, collagen substrate, and extrinsic photobiomodulation on cell morphology for pluripotency induction of H9c2 cells 68 4.3.2. Quantitative gene analysis of embryonic stem cell medium, collagen substrate, and extrinsic photobiomodulation on H9c2 cell gene expression 72 4.4. Investigation of the effect of the culture medium and supplementary factors on directing cell differentiation towards the cardiomyocyte lineage 87 4.4.1. The effect of medium on cell morphology during induced cardiomyogenic differentiation 88 4.4.2. Characterization of undifferentiated and differentiated H9c2 cells by fluorescence immunostaining 92 4.4.3. The quantitative analysis of cardiomyocyte gene expression 95 Chapter 5 Conclusions 103 Reference 106 Appendix 115

[1] M. Comelli, R. Domenis, E. Bisetto, M. Contin, M. Marchini, F. Ortolani, L. Tomasetig, I. Mavelli, Cardiac differentiation promotes mitochondria development and ameliorates oxidative capacity in H9c2 cardiomyoblasts, Mitochondrion 11(2) (2011) 315-326.
[2] M. Pagano, S. Naviglio, A. Spina, E. Chiosi, G. Castoria, M. Romano, A. Sorrentino, F. Illiano, G. Illiano, Differentiation of H9c2 cardiomyoblasts: The role of adenylate cyclase system, Journal of cellular physiology 198(3) (2004) 408-416.
[3] K. Meganathan, I. Sotiriadou, K. Natarajan, J. Hescheler, A. Sachinidis, Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development, International journal of cardiology 183 (2015) 117-128.
[4] M. Dobaczewski, W. Chen, N.G. Frangogiannis, Transforming growth factor (TGF)-β signaling in cardiac remodeling, Journal of molecular and cellular cardiology 51(4) (2011) 600-606.
[5] C. Williams, K.P. Quinn, I. Georgakoudi, L.D. Black III, Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro, Acta biomaterialia 10(1) (2014) 194-204.
[6] E. Holt, P. Lunde, O. Sejersted, G. Christensen, Electrical stimulation of adult rat cardiomyocytes in culture improves contractile properties and is associated with altered calcium handling, Basic research in cardiology 92 (1997) 289-298.
[7] Y.-J. Kim, A. Tamadon, Y.-Y. Kim, B.-C. Kang, S.-Y. Ku, Epigenetic Regulation of Cardiomyocyte Differentiation from Embryonic and Induced Pluripotent Stem Cells, International Journal of Molecular Sciences 22(16) (2021) 8599.
[8] M. Cui, Z. Wang, R. Bassel-Duby, E.N. Olson, Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease, Development 145(24) (2018) dev171983.
[9] N. Shiraki, Y. Higuchi, S. Harada, K. Umeda, T. Isagawa, H. Aburatani, K. Kume, S. Kume, Differentiation and characterization of embryonic stem cells into three germ layers, Biochemical and biophysical research communications 381(4) (2009) 694-699.
[10] P. Gadue, T.L. Huber, M.C. Nostro, S. Kattman, G.M. Keller, Germ layer induction from embryonic stem cells, Experimental hematology 33(9) (2005) 955-964.
[11] M. Okada, M. Oka, Y. Yoneda, Effective culture conditions for the induction of pluripotent stem cells, Biochimica et Biophysica Acta (BBA)-General Subjects 1800(9) (2010) 956-963.
[12] T. Seki, K. Fukuda, Methods of induced pluripotent stem cells for clinical application, World journal of stem cells 7(1) (2015) 116.
[13] P.L. Kang, C.H. Chen, S.Y. Chen, Y.J. Wu, C.Y. Lin, F.H. Lin, S.M. Kuo, Nano‐sized collagen I molecules enhanced the differentiation of rat mesenchymal stem cells into cardiomyocytes, Journal of Biomedical Materials Research Part A 101(10) (2013) 2808-2816.
[14] Y.-J. Wu, S.Y. Chen, S.J. Chang, S.M. Kuo, Enhanced differentiation of rat MSCs into cardiomyocytes with 5-azacytidine/collagen I nano-molecules, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013, pp. 322-325.
[15] J. Joshi, D. Brennan, V. Beachley, C.R. Kothapalli, Cardiomyogenic differentiation of human bone marrow‐derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats, Journal of Biomedical Materials Research Part A 106(12) (2018) 3303-3312.
[16] J. Joshi, G. Mahajan, C.R. Kothapalli, Three‐dimensional collagenous niche and azacytidine selectively promote time‐dependent cardiomyogenesis from human bone marrow‐derived MSC spheroids, Biotechnology and bioengineering 115(8) (2018) 2013-2026.
[17] H.K. Kim, J.H. Kim, A.A. Abbas, D.-O. Kim, S.-J. Park, J.Y. Chung, E.K. Song, T.R. Yoon, Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells, Lasers in medical science 24(2) (2009) 214-222.
[18] F. Peng, H. Wu, 620nm red light promotes celluar viability and mRNA expression of collagen type I in bone mesenchymal stem cells of rat, 2010 Symposium on Photonics and Optoelectronics, IEEE, 2010, pp. 1-3.
[19] S.V. Sandhu, S. Gupta, H. Bansal, K. Singla, Collagen in health and disease, Journal of Orofacial research (2012) 153-159.
[20] C. Dong, Y. Lv, Application of collagen scaffold in tissue engineering: recent advances and new perspectives, Polymers 8(2) (2016) 42.
[21] L. Ding, H. Sun, J. Su, N. Lin, B. Péault, T. Song, J. Yang, J. Dai, Y. Hu, Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus, Biomaterials 35(18) (2014) 4888-4900.
[22] W. Liu, B. Xu, W. Xue, B. Yang, Y. Fan, B. Chen, Z. Xiao, X. Xue, Z. Sun, M. Shu, A functional scaffold to promote the migration and neuronal differentiation of neural stem/progenitor cells for spinal cord injury repair, Biomaterials 243 (2020) 119941.
[23] C. Doillon, M.A. Watsky, M. Hakim, J. Wang, R. Munger, N. Laycock, R. Osborne, M. Griffith, A collagen-based scaffold for a tissue engineered human cornea: physical and physiological properties, The International journal of artificial organs 26(8) (2003) 764-773.
[24] M.A. Schwartz, R.K. Assoian, Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways, Journal of cell science 114(14) (2001) 2553-2560.
[25] F. Koohestani, A.G. Braundmeier, A. Mahdian, J. Seo, J. Bi, R.A. Nowak, Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells, PloS one 8(9) (2013) e75844.
[26] L. Bozec, G. van der Heijden, M. Horton, Collagen fibrils: nanoscale ropes, Biophysical journal 92(1) (2007) 70-75.
[27] V.W. Tang, Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology, Molecular biology of the cell 31(17) (2020) 1823-1834.
[28] L. Bozec, M. Odlyha, Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy, Biophysical journal 101(1) (2011) 228-236.
[29] Y. Mosleh, W. de Zeeuw, M. Nijemeisland, J.C. Bijleveld, P. van Duin, J.A. Poulis, The structure–property correlations in dry gelatin adhesive films, Advanced Engineering Materials 23(1) (2021) 2000716.
[30] J.J. Stankus, J. Guan, W.R. Wagner, Fabrication of biodegradable elastomeric scaffolds with sub‐micron morphologies, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 70(4) (2004) 603-614.
[31] C.N. Grover, J.H. Gwynne, N. Pugh, S. Hamaia, R.W. Farndale, S.M. Best, R.E. Cameron, Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films, Acta biomaterialia 8(8) (2012) 3080-3090.
[32] B. Chevallay, D. Herbage, Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy, Medical and Biological Engineering and Computing 38 (2000) 211-218.
[33] S. Chattopadhyay, R.T. Raines, Collagen‐based biomaterials for wound healing, Biopolymers 101(8) (2014) 821-833.
[34] A.V. Taubenberger, M.A. Woodruff, H. Bai, D.J. Muller, D.W. Hutmacher, The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation, Biomaterials 31(10) (2010) 2827-2835.
[35] P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, M.R. Hamblin, Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring, Seminars in cutaneous medicine and surgery, NIH Public Access, 2013, p. 41.
[36] B. Ahrabi, M.R. Tavirani, M.S. Khoramgah, M. Noroozian, S. Darabi, S. Khoshsirat, H.A. Abbaszadeh, The effect of photobiomodulation therapy on the differentiation, proliferation, and migration of the mesenchymal stem cell: a review, Journal of Lasers in Medical Sciences 10(Suppl 1) (2019) S96.
[37] J.T. Hashmi, Y.Y. Huang, B.Z. Osmani, S.K. Sharma, M.A. Naeser, M.R. Hamblin, Role of low‐level laser therapy in neurorehabilitation, Pm&r 2 (2010) S292-S305.
[38] A.C. Chen, P.R. Arany, Y.-Y. Huang, E.M. Tomkinson, S.K. Sharma, G.B. Kharkwal, T. Saleem, D. Mooney, F.E. Yull, T.S. Blackwell, Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts, PloS one 6(7) (2011) e22453.
[39] L.F. de Freitas, M.R. Hamblin, Proposed mechanisms of photobiomodulation or low-level light therapy, IEEE Journal of selected topics in quantum electronics 22(3) (2016) 348-364.
[40] T.I. Karu, Mitochondrial signaling in mammalian cells activated by red and near‐IR radiation, Photochemistry and photobiology 84(5) (2008) 1091-1099.
[41] M.P.P. Ferreira, R.A.M. Ferrari, E.D. Gravalos, M.D. Martins, S.K. Bussadori, D.A.B. Gonzalez, K.P.S. Fernandes, Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model, Photomedicine and laser surgery 27(6) (2009) 901-906.
[42] G. Bölükbaşı Ateş, A. Ak, B. Garipcan, M. Gülsoy, Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells, Cytotechnology 72 (2020) 247-258.
[43] B.W. Henderson, T.J. Dougherty, How does photodynamic therapy work?, Photochemistry and photobiology 55(1) (1992) 145-157.
[44] U. Schmidt-Erfurth, T. Hasan, Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration, Survey of ophthalmology 45(3) (2000) 195-214.
[45] A.-S. Belzacq, E. Jacotot, H.L. Vieira, D. Mistro, D.J. Granville, Z. Xie, J.C. Reed, G. Kroemer, C. Brenner, Apoptosis induction by the photosensitizer verteporfin: identification of mitochondrial adenine nucleotide translocator as a critical target, Cancer research 61(4) (2001) 1260-1264.
[46] T. Kushibiki, Y. Tu, A.O. Abu-Yousif, T. Hasan, Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation, Scientific reports 5(1) (2015) 1-11.
[47] M.B. Bhavsar, G. Cato, A. Hauschild, L. Leppik, K.M.C. Oliveira, M.J. Eischen-Loges, J.H. Barker, Membrane potential (Vmem) measurements during mesenchymal stem cell (MSC) proliferation and osteogenic differentiation, PeerJ 7 (2019) e6341.
[48] J. You, A. Bragin, H. Liu, L. Li, Preclinical studies of transcranial photobiomodulation in the neurological diseases, Translational Biophotonics 3(2) (2021) e202000024.
[49] B.M. Carlson, Human embryology and developmental biology, Elsevier Health Sciences2018.
[50] D. Später, E.M. Hansson, L. Zangi, K.R. Chien, How to make a cardiomyocyte, Development 141(23) (2014) 4418-4431.
[51] E.A. Woodcock, S.J. Matkovich, Cardiomyocytes structure, function and associated pathologies, The international journal of biochemistry & cell biology 37(9) (2005) 1746-1751.
[52] M.D. Bootman, I. Smyrnias, R. Thul, S. Coombes, H.L. Roderick, Atrial cardiomyocyte calcium signalling, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1813(5) (2011) 922-934.
[53] J. Aronsen, F. Swift, O. Sejersted, Cardiac sodium transport and excitation–contraction coupling, Journal of molecular and cellular cardiology 61 (2013) 11-19.
[54] C. Vásquez‐Trincado, I. García‐Carvajal, C. Pennanen, V. Parra, J.A. Hill, B.A. Rothermel, S. Lavandero, Mitochondrial dynamics, mitophagy and cardiovascular disease, The Journal of physiology 594(3) (2016) 509-525.
[55] S.L. Pereira, J. Ramalho-Santos, A.F. Branco, V.A. Sardao, P.J. Oliveira, R.A. Carvalho, Metabolic remodeling during H9c2 myoblast differentiation: relevance for in vitro toxicity studies, Cardiovascular toxicology 11 (2011) 180-190.
[56] S.J. Watkins, G.M. Borthwick, H.M. Arthur, The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro, In Vitro Cellular & Developmental Biology-Animal 47 (2011) 125-131.
[57] C. Ménard, S. Pupier, D. Mornet, M. Kitzmann, J. Nargeot, P. Lory, Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells, Journal of biological chemistry 274(41) (1999) 29063-29070.
[58] Q. Qian, H. Qian, X. Zhang, W. Zhu, Y. Yan, S. Ye, X. Peng, W. Li, Z. Xu, L. Sun, 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase, Stem cells and development 21(1) (2012) 67-75.
[59] K. Monzen, I. Shiojima, Y. Hiroi, S. Kudoh, T. Oka, E. Takimoto, D. Hayashi, T. Hosoda, A. Habara-Ohkubo, T. Nakaoka, Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4, Molecular and cellular biology 19(10) (1999) 7096-7105.
[60] B. Cole, The Multi-Lineage Transcription Factor ISL1 Controls Cardiomyocyte Cell Fate through Interaction with NKX2. 5, University of California, San Francisco2022.
[61] M. Suhaeri, R. Subbiah, S.Y. Van, P. Du, I.G. Kim, K. Lee, K. Park, Cardiomyoblast (h9c2) differentiation on tunable extracellular matrix microenvironment, Tissue Engineering Part A 21(11-12) (2015) 1940-1951.
[62] N. Malik, M.S. Rao, A review of the methods for human iPSC derivation, Pluripotent Stem Cells: Methods and Protocols (2013) 23-33.
[63] V.K. Singh, M. Kalsan, N. Kumar, A. Saini, R. Chandra, Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery, Frontiers in cell and developmental biology 3 (2015) 2.
[64] B. Lo, L. Parham, Ethical issues in stem cell research, Endocrine reviews 30(3) (2009) 204-213.
[65] J.S. Draper, H.D. Moore, L.N. Ruban, P.J. Gokhale, P.W. Andrews, Culture and characterization of human embryonic stem cells, Stem cells and development 13(4) (2004) 325-336.
[66] T.E. Ludwig, M.E. Levenstein, J.M. Jones, W.T. Berggren, E.R. Mitchen, J.L. Frane, L.J. Crandall, C.A. Daigh, K.R. Conard, M.S. Piekarczyk, Derivation of human embryonic stem cells in defined conditions, Nature biotechnology 24(2) (2006) 185-187.
[67] K.H. Narsinh, J. Plews, J.C. Wu, Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins?, Molecular Therapy 19(4) (2011) 635-638.
[68] A.F. Branco, S.P. Pereira, S. Gonzalez, O. Gusev, A.A. Rizvanov, P.J. Oliveira, Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype, PloS one 10(6) (2015) e0129303.
[69] M. Cabiati, F. Vozzi, F. Gemma, F. Montemurro, C. De Maria, G. Vozzi, C. Domenici, S. Del Ry, Cardiac tissue regeneration: A preliminary study on carbon‐based nanotubes gelatin scaffold, Journal of Biomedical Materials Research Part B: Applied Biomaterials 106(8) (2018) 2750-2762.
[70] K.-Y. Law, Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right, ACS Publications, 2014, pp. 686-688.
[71] R. Asmatulu, W.S. Khan, R.J. Reddy, M. Ceylan, Synthesis and analysis of injection‐molded nanocomposites of recycled high‐density polyethylene incorporated with graphene nanoflakes, Polymer Composites 36(9) (2015) 1565-1573.
[72] A. Di Gianfrancesco, Technologies for chemical analyses, microstructural and inspection investigations, Materials for ultra-supercritical and advanced ultra-supercritical power plants, Elsevier2017, pp. 197-245.
[73] M.J. Sanderson, I. Smith, I. Parker, M.D. Bootman, Fluorescence microscopy, Cold Spring Harbor Protocols 2014(10) (2014) pdb. top071795.
[74] P.O. Bayguinov, D.M. Oakley, C.C. Shih, D.J. Geanon, M.S. Joens, J.A. Fitzpatrick, Modern laser scanning confocal microscopy, Current protocols in cytometry 85(1) (2018) e39.
[75] W.G. Jerome, R.L. Price, Basic confocal microscopy, Springer2018.
[76] J.A. Ramos-Vara, Technical aspects of immunohistochemistry, Veterinary pathology 42(4) (2005) 405-426.
[77] C. Oliver, M.C. Jamur, Immunocytochemical methods and protocols, Springer2010.
[78] J. Gibbs, M. Kennebunk, Effective blocking procedures, ELISA Tech. Bull 3 (2001) 1-6.
[79] I. Buchwalow, V. Samoilova, W. Boecker, M. Tiemann, Non-specific binding of antibodies in immunohistochemistry: fallacies and facts, Scientific reports 1(1) (2011) 1-6.
[80] E.T. Saitta, J. Vinther, A perspective on the evidence for keratin protein preservation in fossils: An issue of replication versus validation, Palaeontologia Electronica 22(3) (2019) 1-30.
[81] M.F. Wangler, H.J. Bellen, In vivo animal modeling: Drosophila, Basic Science Methods for Clinical Researchers, Elsevier2017, pp. 211-234.
[82] M.L. Passos, M.L.M. Saraiva, Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies, Measurement 135 (2019) 896-904.
[83] M.R. Green, J. Sambrook, Isolation and quantification of DNA, Cold Spring Harbor Protocols 2018(6) (2018) pdb. top093336.
[84] M. Arya, I.S. Shergill, M. Williamson, L. Gommersall, N. Arya, H.R. Patel, Basic principles of real-time quantitative PCR, Expert review of molecular diagnostics 5(2) (2005) 209-219.
[85] M. Eghbali, O. Blumenfeld, S. Seifter, P. Buttrick, L. Leinwand, T. Robinson, M. Zern, M. Giambrone, Localization of types I, III and IV collagen mRNAs in rat heart cells by in situ hybridization, Journal of molecular and cellular cardiology 21(1) (1989) 103-113.
[86] A.D. Bradshaw, C.F. Baicu, T.J. Rentz, A.O. Van Laer, J. Boggs, J.M. Lacy, M.R. Zile, Pressure Overload–Induced Alterations in Fibrillar Collagen Content and Myocardial Diastolic Function: Role of Secreted Protein Acidic and Rich in Cysteine (SPARC) in Post–Synthetic Procollagen Processing, Circulation 119(2) (2009) 269-280.
[87] S. Muneekaew, M.-J. Wang, S.-y. Chen, Control of stem cell differentiation by using extrinsic photobiomodulation in conjunction with cell adhesion pattern, Scientific reports 12(1) (2022) 1-14.
[88] W. Zhu, J.K. George, V.J. Sorger, L.G. Zhang, 3D printing scaffold coupled with low level light therapy for neural tissue regeneration, Biofabrication 9(2) (2017) 025002.
[89] J. Kapuscinski, DAPI: a DNA-specific fluorescent probe, Biotechnic & histochemistry 70(5) (1995) 220-233.
[90] T. Cao, H. Jia, Y. Dong, S. Gui, D. Liu, In situ formation of covalent second network in a DNA supramolecular hydrogel and its application for 3D cell imaging, ACS applied materials & interfaces 12(4) (2020) 4185-4192.
[91] R. Madonna, S. Guarnieri, C. Kovácsházi, A. Görbe, Z. Giricz, Y.J. Geng, M.A. Mariggiò, P. Ferdinandy, R. De Caterina, Telomerase/myocardin expressing mesenchymal cells induce survival and cardiovascular markers in cardiac stromal cells undergoing ischaemia/reperfusion, Journal of Cellular and Molecular Medicine 25(12) (2021) 5381-5390.
[92] Q. Yin, P. Zhu, W. Liu, Z. Gao, L. Zhao, C. Wang, S. Li, M. Zhu, Q. Zhang, X. Zhang, A conductive bioengineered cardiac patch for myocardial infarction treatment by improving tissue electrical integrity, Advanced Healthcare Materials 12(1) (2023) 2201856.
[93] A. Stylianou, Atomic force microscopy for collagen-based nanobiomaterials, Journal of Nanomaterials 2017 (2017).
[94] S. George, M.R. Hamblin, H. Abrahamse, Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts, Journal of Photochemistry and Photobiology B: Biology 188 (2018) 60-68.
[95] J. Wang, J. Koelbl, A. Boddupalli, Z. Yao, K.M. Bratlie, I.C. Schneider, Transfer of assembled collagen fibrils to flexible substrates for mechanically tunable contact guidance cues, Integrative Biology 10(11) (2018) 705-718.
[96] F. Ataollahi, S. Pramanik, A. Moradi, A. Dalilottojari, B. Pingguan‐Murphy, W.A.B. Wan Abas, N.A. Abu Osman, Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates, Journal of biomedical materials research Part A 103(7) (2015) 2203-2213.
[97] Y. Ogawa, H. Itoh, K. Nakao, Molecular biology and biochemistry of natriuretic peptide family, Clinical and Experimental Pharmacology and Physiology 22(1) (1995) 49-54.
[98] B. Wei, J.-P. Jin, TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure–function relationships, Gene 582(1) (2016) 1-13.

無法下載圖示 全文公開日期 2025/08/01 (校內網路)
全文公開日期 2025/08/01 (校外網路)
全文公開日期 2025/08/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE