簡易檢索 / 詳目顯示

研究生: Andree Soendoro
Andree Soendoro
論文名稱: Application of Carbon Nanohorns Loaded Carbon Dot-coated Iron Oxide Nanoparticles to Multiple Therapies
Application of Carbon Nanohorns Loaded Carbon Dot-coated Iron Oxide Nanoparticles to Multiple Therapies
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 高震宇
Chen-Yu Kao
氏原真樹
Masaki Ujihara
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 63
中文關鍵詞: carbon nanohornsiron oxide nanoparticlescarbon dotsdoxorubicingemcitabinemultiple therapy
外文關鍵詞: carbon nanohorns, iron oxide nanoparticles, carbon dots, doxorubicin, gemcitabine, multiple therapy
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

通過附著奈米碳點塗覆的氧化鐵奈米顆粒(CNH / Fe3O4 @ C)來修飾作為藥物載體的奈米顆粒,以進行多種治療並增強其性能。 CNH / Fe3O4 @ C已成功合成,如先前報告的用於熱療和化學療法的組合療法。顯示出良好磁體響應的氧化鐵奈米顆粒是高溫的原因。同時,由於其能夠產生單線態氧的碳點如前所述,是光動力療法(PDT)的原因。對於化療研究,CNH / Fe3O4 @ C增強了阿黴素(DOX)負荷,DOX釋放以及吉西他濱負荷和吉盤西林釋放。還測量了DOX釋放和吉西他濱釋放的溫度依賴性,並導致在較高溫度下較高的藥物釋放。對於PDT研究,檢查了CNH / Fe3O4 @C產生的單線態氧。此外,已經進行了藥物釋放和光照射的組合,並且在藥物釋放方面顯示出良好的結果。


Carbon nanohorns as the drug carrier were modified by attaching the carbon dots coated iron oxide nanoparticles (CNH/Fe3O4@C) in order to perform multiple therapies and to improve their performance. CNH/Fe3O4@C has been successfully synthesized as previously reported for combination therapy of hyperthermia and chemotherapy. Iron oxide nanoparticles that showed a good magnet response are responsible to hyperthermia. Meanwhile, the carbon dots due to its ability to produce singlet oxygen as previous report are responsible to photodynamic therapy (PDT). Towards chemotherapy study, CNH/Fe3O4@C enhanced the doxorubicin (DOX) loading, DOX release and also gemcitabine loading, gemcitabine release. The temperature dependency of DOX release and gemcitabine release was also measured and resulted higher drug release in higher temperature. Towards the PDT study, the singlet oxygen generated by CNH/Fe3O4@C was examined. Furthermore, the combination of drug release and light irradiation has been performed and showed a good outcome in drug release.

ABSTRACT i 摘要 ii ACKNOWLEDGEMENT iii CONTENT iv LIST OF FIGURES v LIST OF TABLES vii CHAPTER I 1 1.1. INTRODUCTION 1 1.2. MOTIVATION 9 CHAPTER 2 11 2.1. MATERIALS AND REAGENTS DESCRIPTION 11 2.2. INSTRUMENTS 11 2.3. MATERIAL PREPARATION 12 2.4. QUANTUM YIELD CALCULATION 14 2.5. SINGLET OXYGEN GENERATION 15 2.6. DRUG LOADING AND RELEASE (Physically Bound) 17 2.7. DRUG LOADING (Chemically Attached) 19 CHAPTER 3 20 3.1. CHARACTERIZATION OF MATERIALS 20 3.2. QUANTUM YIELD CALCULATION 33 3.3. SINGLET OXYGEN GENERATION (PHOTODYNAMIC THERAPY) 36 3.4. DRUG LOADING and RELEASE (CHEMOTHERAPY) 39 A. Drug loading (Physically attached) 39 B. Drug Release (Physically attached) 41 3.5. DRUG LOADING (CHEMICALLY BONDING) 45 CHAPTER 4 50 REFERENCES 51

1. American Cancer Society. Cancer Facts and Figures 2017. Atlanta: AmericanCancerSociety; 2017.
2. Sutradhar, K.B., Amin,Md L. Nanotechnology in Cancer Drug Delivery and Selective Targeting. ISRN Nanotechnology . 2014
3. VanDyke, D., Kyriacopulos, P., Yassini B., Wright A., Burkhart E., Jacek S., Pratt., Peterson CR., Rai, P.,Nanoparticle Based Combination Treatments for Targeting Multiple Hallmarks of Cancer. Int J Nano Stud Technol. 2016 ; Suppl 4: 1–18. doi:10.19070/2167-8685-SI04001. 2016.
4. Hanahan, Douglas; Weinberg, Robert A. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–674. [PubMed: 21376230]
5. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, et al. Challenges and key considerations of the enhanced permeability and retention effect (EPR) for nanomedicine drug delivery in oncology. Cancer Research. 2013; 73(8):2412–2417. [PubMed: 23423979]
6. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, et al. Temporal targeting of tumour cells and neovasculature with a nanoscaledelivery system. Nature. 2005; 436(7050):568–572. [PubMed: 16049491]
7. Wu, H., Jin, H., Wang, C., Zhang, Z., Ruan, H., Sun, L. Yang, C., Li, Y., Qin, W.. Wang, C., Synergistic Cisplatin/Doxorubicin Combination Chemotherapy for Multidrug-Resistant Cancer Via Polymeric Nanogels Targeting Delivery. ACS Appl. Mater. Interfaces 2017, 9, 9426−9436. 2017.
8. Hu, Q.; Sun, W.; Wang, C.; Gu, Z. Recent Advances of Cocktail Chemotherapy by Combination Drug Delivery Systems. Adv. Adv. Drug Delivery Rev. 2016, 98, 19−34..
9. Parhi, P., Mohanty, C., Sahoo, S.K., Nanotechnology-based combiyional drug delivery: an emerging approach for cancer therapy. Drug Discovery Today Volume 17, Numbers 17/18 September 2012.
10. Dobson, J. M., Ann E Hohenhaus and Anne E Peaston, Chapter 15; Cancer Chemotheraphy,
11. Lehar, J. et al. (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659–666
12. Thorn, C. F., Oshiro, C, Marsh, S. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011 July; 21(7): 440–446. doi:10.1097/ FPC.0b013e32833ffb56.
13. Kumar, A., Gautam B., Dubey, C., A REVIEW: ROLE OF DOXORUBICIN IN TREATMENT OF CANCER. IJPSR, 2014; Vol. 5(10): 4117-4128
14. Toschi, L., Finnochiaro, G., Bartolini, S., Gioia, V., Capuzzo, F., Role of Gemcitsbine in cancer therapy. Future Oncology (2005) 1 (1) 7-17.
15. Anonymous. https://www.cancercenter.com/cancer-drugs/gemcitabine/.Cancer treatments. Centers of America.
16. Jha, S., Pramod Kumar Sharma, Rishabha Malviya. Hyperthermia: Role and Risk Factor for Cancer Treatment. 2016,
17. Wust, P., Hildebrandt, B., Sreenivasa, G., 2002. Hyperthermia in combined treatment of cancer. Lancet Oncol. 3 (8), 487–497.
18. Alexander, H.R., 2001. Isolation Perfusion. In: De Vita Jr., V.T., Hellman, S., Rosenberg, S.A. (Eds.), Cancer: Principles and Practice of Oncology, p. 1.
19. Kataoka, H., Nishie H., Hayashi N., Tanaka, M. Nomoto A. New photodynamic therapy with next-generation photosensitizers. Ann Transl Med 2017;5(8):183.
20. Baumler, W. et al. UVA and endogenous photosensitizers – the detection of singlet oxygen by its luminescence. Photochem. Photobiol. Sci., 2012, 11, 107.
21. T. R. Williams, S. A. Winfield and J. N. Miller, Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst, 108, 1983, 1067.
22. S. Dhami, A. J. de Mello, G. Rumbles, S. M. Bishop, D. Phillips and A. Beeby, Phthalocyanine fluorescence at high concentration: dimers or reabsorption effect?. Photochem. Photobiol. 61,1995, 341.
23. Y. Zhang, Y. Wang, X. Feng, F. Zhang, Y. Yang, X. Liu, Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots. App. Surface Science 387, 2016, 1236-1246.
24. S. Jie, T. Zhang, Y. Cai, X. Chen, S. Shng, and J. Li, Highly fluorescent N,S-co-doped carbon dots: synthesis and multiple applications. New J. Chem., 2017, 41, 11125.
25. T. R. Williams, S. A. Winfield and J. N. Miller, Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst, 108, 1983, 1067.
26. S. Dhami, A. J. de Mello, G. Rumbles, S. M. Bishop, D. Phillips and A. Beeby, Phthalocyanine fluorescence at high concentration: dimers or reabsorption effect?. Photochem. Photobiol. 61,1995, 341.
27. Pardo, J., Peng, Z. Leblanc, R.M. Cancer Targeting and Drug Delivery Using Carbon-Based Quantum Dots and Nanotubes. Molecules 2018, 23, 378; doi:10.3390/molecules23020378
28. T. T. Meiling, P. J. Cywinski, and I. Bald, White carbon: fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis. Scientific reports, 2016, 6, 28557.
29. Dewitt, M.R., Alison, M.P., Robertson, J., Rylander C.G., Rylander, M.N., Influence of Hyperthermia on efficacy and uptake carbon nanohorn-cisplatin conjugates. 2014, Vol. 136 / 021003-1. Journal of Biomedical Engineeering.
30. Sasikala, A. R. K., Thomas, R. J., et al. Multifunctional nanocarpets for cancer theranostics: remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. Scientific Reports | 6:20543 | DOI: 10.1038/srep20543
31. Thorat, N. D., Bohara, R.A., et al. Effective Cancer Theranostics with Polymer Encapsulated superparamagnetic nanoparticles combined effects of magnetic hyperthermia and controlled drug release. ACS Biomater. Sci. Eng. 2017, 3, 1332−1340.
32. Lee, H., Han, J., Shin, H., Han, H., Na, K., Kim,H. Combination of chemotherapy and photodynamic therapy for cancer treatment with sonoporation effects.
33. Zhou, L., Zhou, L., Wei, S.H., Ge, X.F., Zhou, J.H., et al. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Journal of Photochemistry and Photobiology B: Biology 135 (2014) 7–16
34. Wang, X.J. Meng, G. Q. et al. A Reactive 1O2 - Responsive Combined Treatment System of Photodynamic and Chemotherapy for Cancer. Scientific Reports | 6:29911 | DOI: 10.1038/srep29911. 2016.
35. Yamasita T., Kohei Yamashita Hiromi Nabeshi, Tomoaki Yoshikawa, Yasuo Yoshioka, Shin-ichi Tsunoda and Yasuo Tsutsumi. Carbon Nanomaterials: Efficacy and Safety for Nanomedicine. Materials 2012. ISSN 1996-1944
36. Su, Jin Hao. Preparation and Characterization of Iron Oxide-loaded Carbon Nanohorn. Master Thesis. NTUST. 2016
37. Yang J.X, Su, H., Cai, L. Liu, S.,Chai, Y., Zhang, C., Dual Chemodrug-Loaded Single-Walled Carbon Nanohorns for Multimodal Imaging-Guided Chemo-Photothermal Therapy of Tumors and Lung Metasses. Theranostics 2018, Vol. 8, Issue 7. 2018.
38. B.P. Jiang, L.F. Hu, X.C. Shen, et al. One-Step Preparation of a Water-Soluble Carbon Nanohorn/ Phthalocyanine Hybrid for Dual-Modality Photothermal and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2014, 6, 18008−18017.
39. Matsumura, S., Ajima, K., Yudasaka, M, Ijima, S. Shiba, K. Dispersion of Cisplatin-Loaded Carbon Nanohorns with Comprised of an Artificial Peptide Aptamer and Polyethylene Glycol. VOL. 4, NO. 5, 723–729 MOLECULAR PHARMACEUTICS 723.
40. Wicaksono, K. Effect of NH2 Doping in Carbon Dots on Singlet Oxygen Generation. Master Thesis. NTUST. 2018.
41. Zhu, S. et al. Turn-On Fluorescence Sensor Based on Single-Walled-Carbon-Nanohorn– Peptide Complex for the Detection of Thrombin. Chem. Eur. J. 2012, 18, 16556 – 16561.
42. Brazel, C.S., Huang, X. Chapter 19: The Cost of Optimal Drug Delivery: Reducing and Preventing the Burst Effect in Matrix Systems. Svenson; Carrier-Based Drug Delivery ACS Symposium Series; American Chemical Society: Washington, DC, 2004.
43. Wu, Z.H., Liu, Z.X., Yuan, Y.H. Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. : J. Mater. Chem. B, 2017, 5, 3794
44. M. Aronniemi, J. Sainio, J., Lahtinen. Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method. Surface Science 578 (2005) 108–123.
45. C. He, D. Liu, W. Lin, Self-assembled core–shell nanoparticles for combined chemotherapy and photodynamic therapy of resistant head and neck cancers, ACS nano, 9 (2015) 991-1003.
46. T. Wang, L. Zhang, Z. Su, C. Wang, Y. Liao, Q. Fu, Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy, ACS Appl Mater Interfaces, 3 (2011) 2479-2486.
47. SA. Khdair, D. Chen, Y. Patil, L. Ma, Q.P. Dou, M.P. Shekhar, J. Panyam, Nanoparticle mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance, J Control Release, 141 (2010) 137-144. [23] J.W. Nichols, Y.H. Bae, EPR: evidence and fallacy, J Control Release, 190 (2014) 451- 464.
48. Mascolo, M.C., Pei, Y., Ring, T.A. Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases. Materials 2013, 6, 5549-5567; doi:10.3390/ma6125549.
49. C.-L. Peng, P.-S. Lai, F.-H. Lin, S.Y.-H. Wu, M.-J. Shieh, Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles, Biomaterials, 30 (2009) 3614-3625.
50. Schneider J et al. Molecular Fluorescence in Citric Acid-Based Carbon Dots. J. Phys. Chem. C 2017, 121, 2014−2022
51. Song Y, et al. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C, 2015, 3, 5976.
52. Siriviriyanun, A., Imae, T., Caldero, G., Solans, Conxita. Phototherapeutic functionality of biocompatible graphene oxide/dendrimer hybrids. Colloids and Surfaces B: Biointerfaces 121 (2014) 469–473.
53. Siriviriyanun, A., Popova, M., Imae, T., et al. Preparation of graphene oxide/dendrimer hybrid carriers for delivery of doxorubicin. Chemical Engineering Journal 281 (2015) 771–7815.
54. Mandal S., et al., Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment. Nanomaterials 2017, 7, 426; doi:10.3390/nano7120426.
55. N. S. Mc. Inifyre, D.G. Zetaruk, X-ray Photoelectron Spectroscopic Studies of Iron Oxides. ANALYTICAL CHEMISTRY, VOL. 49. NO. 11. SEPTEMBER 1977.
56. A.P. Grossvenor, B.A. Kobe. N.S. M.C. Biesnger, Mc. Infyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004; 36: 1564–1574.
57. M. Ibrahim Dar, S.A. Shivashankar. Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. The Royal Society of Chemistry 2013.
58. Mohammadi, A., Barikani, M., Synthesis and characterization of superparamagnetic Fe3O4 nanoparticles coated with thiodiglycol. MATERIALS CHARACTERIZATION 90 (2014) 88 – 9 3.

無法下載圖示 全文公開日期 2023/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE