簡易檢索 / 詳目顯示

研究生: 林士豪
Shih-Hao Lin
論文名稱: 異質網路下負載平衡之效能評估
Performance Evaluation of Load Balancing in Heterogeneous Cellular Networks
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 呂政修
Jheng-Siou Leu
鄧德雋
De-Jyun Deng
林春成
Chun-Cheng Lin
曾志成
Jhih-Cheng Zeng
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 34
中文關鍵詞: 負載平衡異質網路隨機幾何
外文關鍵詞: Load balancing, Heterogeneous cellular networks, Stochastic geometry
相關次數: 點閱:335下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於兩層macro/femto異質網路下不同基地台的特性會導致基地台間負載的不平衡,而此種情形將會嚴重地影響異質網路的效能,如何設計理想的負載平衡策略是異質網路中的關鍵議題。因此我們需要一個有效的模型來評估這些負載平衡策略的效能。此篇論文使用隨機幾何的方式以求能夠更精準地模擬各層基地台不規則的分佈情形,並使用自我配置門檻值且不透過後端網路溝通的基本負載平衡策略。此篇論文提出兩個新的效能指標,switch probability和isolated probability來分析所使用之基本負載平衡策略。最後我們使用了OpencellID網站所提供的資料進行模擬,並證實了此數學模型在兩層異質網路的成效。


The diverse characteristics of base stations (BSs) in two-tier macro/femto heterogeneous cellular networks (HCN) might lead unbalanced loading among them, which significantly affects the performance of HCN. How to design a suitable load balancing strategy is a critical issue and obviously we need an efficient model to evaluate the performance of proposed model. To precisely model the behaviors of BSs in each tier deployed in irregular fashion, this thesis adopts stochastic geometry. A self-configured threshold-based strategy without communication overheads among BSs in each tier is proposed as the baseline load balancing strategy. Two novel performance metrics, switch probability and isolated probability, are proposed to evaluate the performance of the threshold-based strategy. We also conduct simulation experiments according to data from OpenCellID web site to prove the effectiveness of the proposed mathematical models in the realistic two-tier HCNs.

Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table of Contents . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 3 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Illustrations . . . . . .. . . . . . . . . . . . . . . . . . . . . . 6 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Stochastic geometry and heterogeneous cellular networks . . . . . . . 10 2.2 Load Balancing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Signaling Overhead . . . . . . . . . . . . . . . . . . . . .. . . . . . . 13 3 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 14 3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Performance Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Distribution of Coverage Area Size . . . . . . . . . . . . . . . . . . . 19 4.2 The Number of Users in A Cell Area . . . . . . . . . . . . . . . . . . 20 4.3 Switch Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.4 Isolated Probability . . . . . . . . . . . . . . .. . . . . . . . . . . 22 4.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.1 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 References . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 30

[1] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo,
O. Song, D. Malladi, and Q. Inc., “A survey on 3gpp heterogeneous networks,”
IEEE Wireless Commun. Mag., vol. 18, no. 3, pp. 10–21, June 2011.
[2] L. Xavier, “Multitier cell design,” IEEE Computer, vol. 35, no. 8, pp. 60–64,Aug. 1997.
[3] B. B. A, “Lte-advanced and the evolution of lte deployments,” IEEE Wireless
Commun. Mag., vol. 18, no. 5, pp. 4–5, 2011.
[4] Y. S. Soh, T. Q. S. Quek, M. Kountouris, and H. Shin, “Energy efficient heterogeneous cellular networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 5, pp. 840 – 850, May 2013.
[5] J. G. Andrews, “Seven ways that hetnets are a cellular paradigm shift,” IEEE
Commun. Mag., vol. 51, no. 3, pp. 136–144, Mar. 2013.
[6] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visotsky,
T. A. Thomas, N. S. Networks, J. G. Andrews, P. Xia, H. S. Jo, H. S. Dhillon,
and T. D. Novlan, “Heterogeneous cellular networks: From theory to practice,”
IEEE Computer, vol. 50, no. 5, pp. 54–64, June 2012.
[7] H. Wang and M. Reed, “Tractable model for heterogeneous cellular networks
with directional antennas,” Communications Theory Workshop (AusCTW),
2012 Australian, vol. 31, no. 5, pp. 61–65, Jan. 2012.
[8] J. G. Andrews, “Femtocells: Past, present and future,” IEEE J. Sel. Areas
Commun., vol. 30, no. 3, pp. 497–508, Apr. 2012.
[9] J. G. Andrews and A. Gatherer, “Femtocell networks: a survey,” IEEE Computer,
vol. 46, no. 9, pp. 59–67, Sept. 2008.
[10] K. Son, S. Chong, and G. Veciana, “Dynamic association for load balancing and
interference avoidance in multi-cell networks,” IEEE Trans. Wireless Commun.,
vol. 8, no. 7, pp. 3566–3576, 2009.
30
[11] D. Xenakis, N. Passas, L. Merakos, and C. Verikoukis, “Mobility management
for femtocells in LTE-Advanced: Key aspects and survey of handover decision
algorithms,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 64–91, June
2014.
[12] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage
and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–
3134, 2011.
[13] C.-H. Lee, C.-Y. Shih, and Y.-S. Chen, “Stochastic geometry based models for
modeling cellular networks in urban areas,” Wireless networks, vol. 19, no. 6,
pp. 1063–1072, 2013.
[14] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications,
2nd ed. Wiley, 1996.
[15] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti,
“Stochastic geometry and random graphs for the analysis and design of wireless
networks,” vol. 27, no. 7, pp. 1029–1046, 2009.
[16] R. W. H. Jr. and M. Kountouris, “Modeling heterogeneous network interference
using poisson point processes,” IEEE Trans. Signal Process., vol. 61, no. 16,
pp. 4114 – 4126, Aug. 2013.
[17] H. S. Dhillon, G. R. Krishna, B. Francois, and J. G. Andrews, “Modeling and
analysis of k-tier downlink heterogeneous cellular networks,” IEEE J. Sel. Areas
Commun., vol. 30, no. 3, pp. 550–560, Apr. 2012.
[18] H. S. Dhillon, R. K. Ganti, and J. G. Andrews, “Load-aware modeling and
analysis of heterogeneous cellular networks,” IEEE Trans. Wireless Commun.,
vol. 12, no. 4, pp. 1666–1677, Apr. 2013.
[19] Q. Ye, M. Al-Shalashy, C. Caramanis, and J. G. Andrews, “On/off macrocells
and load balancing in heterogeneous cellular networks,” in Proc. IEEE
GLOBECOM, May 2013.
31
[20] J. Rodriguez, I. de la Bandera, P. Munoz, and R. Barco, “Load balancing
in a realistic urban scenario for lte networks,” in Proc. IEEE 73rd Vehicular
Technology Conference (VTC Spring), 2011, pp. 1–5.
[21] D. Kim and S. Choi, “Load balancing in open access femtocell based two-tier
cellular networks,” in Proc. IEEE GLOBECOM, Dec. 2012.
[22] S. Mitra and S. DasBit, “A load balancing strategy using dynamic channel
assignment and channel borrowing in cellular mobile environment,” in IEEE
International Conf. Personal Wireless Commun., 2000, pp. 278–282.
[23] E. D. Re, R. Fantacci, and G. Giambene, “Handover and dynamic channel
allocation techniques in mobile cellular networks,” IEEE Trans. Veh. Technol.,
vol. 44, no. 2, pp. 229–237, May 1995.
[24] S. K. Das, S. K. Sen, and R. Jayaram, “A dynamic load balancing strategy for
channel assignment using selective borrowing in cellular mobile environment,”
Wireless Networks, vol. 3, no. 5, pp. 333–347, 1997.
[25] T. Kahwa and N. Georganas, “A hybrid channel assignment scheme in largescale,
cellular-structured mobile communication systems,” IEEE Trans. Commun.,
vol. 26, no. 4, pp. 432–438, 1978.
[26] H. Jiang and S. S. Rappaport, “Cbwl: A new channel assignment and sharing
method for cellular communication systems,” IEEE Trans. Veh. Technol.,
vol. 43, no. 2, pp. 313–322, 1994.
[27] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews,
“User association for load balancing in heterogeneous cellular networks,” IEEE
Trans. Wireless Commun., vol. 12, no. 6, pp. 2706–2716, June 2013.
[28] W. Li, X. Duan, S. Jia, L. Zhang, Y. Liu, and J. Lin, “A dynamic hysteresisadjusting
algorithm in lte self-organization networks,” in Proc. IEEE 75th Vehicular
Technology Conference (VTC Spring), 2012, pp. 1–5.
32
[29] B. Eklundh, “Channel utilization and blocking probability in a cellular mobile
telephone system with directed retry,” IEEE Trans. Commun., vol. 34, no. 4,
pp. 329–337, 1986.
[30] E. Yanmaz and O. K. Tonguz, “Dynamic load balancing and sharing performance
of integrated wireless networks,” IEEE J. Sel. Areas Commun., vol. 22,
no. 5, pp. 862–872, 2004.
[31] L. B. Le, D. T. Hoang, D. Niyato, E. Hossain, and D. I. Kim, “Joint load
balancing and admission control in ofdma-based femtocell networks,” in Proc.
IEEE International Conference on Communications (ICC), 2012, pp. 5135–
5139.
[32] T. Guo, A. ul Quddus, and R. Tafazolli, “Seamless handover for lte macrofemto
networks based on reactive data bicasting,” IEEE Commun. Lett., vol. 16,
no. 11, pp. 1788–1791, Nov. 2012.
[33] M. Luengo, P, Barco, Raquel, and de la Bandera Cascales, “On the potential
of handover parameter optimization for self-organizing networks,” IEEE Trans.
Veh. Technol., vol. 62, no. 5, pp. 1895–1905, 2013.
[34] R. Nasri and Z. Altman, “Handover adaptation for dynamic load balancing in
3gpp long term evolution systems,” 5th International Conference on Advances
in Mobile Computing & Multimedia (MoMM2007), Jakarta, Indonesia (2007),
Dec. 2013.
[35] L. Yun, L. Man, C. Bin, W. Yong, and L. Wenjing, “Dynamic optimization of
handover parameters adjustment for conflict avoidance in long term evolution,”
IEEE China Communications, vol. 10, no. 1, pp. 56–71, 2013.
[36] P. Xia, H.-S. Jo, and J. G. Andrews, “Fundamentals of inter-cell overhead
signaling in heterogeneous cellular networks,” IEEE J. Sel. Topics in Signal
Processing., vol. 6, no. 3, pp. 257–269, June 2012.
[37] H.-L. Fu, P. Lin, and Y.-B. Lin, “Reducing signaling overhead for femtocell/
macrocell networks,” IEEE Trans. Mobile Comput., vol. 12, no. 8, pp. 1587–
1597, Aug. 2013.
33
[38] F. Gaaloul, R. M. Radaydeh, and M.-S. Alouini, “Performance improvement
of switched-based interference mitigation for channel assignment in over-loaded
small-cell networks,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 2091–
2103, May 2013.
[39] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry and its applications.
John Wiley and Son, 1995.
[40] 3GPP, “E-UTRA: Further Advancements for E-UTRA Physical layer aspects,”
3GPP TR 36.814 v9.0.0, Mar. 2010.
[41] “OpenCellID.” [Online]. Available: http://www.opencellid.org/
34

無法下載圖示 全文公開日期 2019/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE