簡易檢索 / 詳目顯示

研究生: 高苹真
Ping-Chen Kao
論文名稱: 最佳化低能隙共軛高分子半導體材料應用於有機薄膜電晶體主動層之各別載子傳輸特性研究
Optimization of Unipolarity Charge Transport Characteristics of Diketopyrrolopyrrole (DPP)-Based Ambipolar Polymer for Organic Thin Film Transistors (OTFTs)
指導教授: 戴龑
Yian Tai
口試委員: 戴龑
Yian Tai
陳志堅
Jyh-Chien Chen
王澤元
Oliver Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 121
中文關鍵詞: 有機薄膜電晶體低能隙材料雙極性特性
外文關鍵詞: OTFT, low band-gap material, ambipolar
相關次數: 點閱:353下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本論文中主要探討有機薄膜電晶體的雙載子特性,實驗中使用高透明度的施體/受體有機高分子材料當作電晶體的主動層,所使用的材料為低能隙共軛高分子Poly{2,6-4,8-di(5-ethylhexylthienyl) benzo [1,2-b;3,4-b] dithiophene-alt-5-dibutyloctyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4-dione (PBDTT-DPP)。
對於施體/受體高分子來說,介面之間的表面粗糙度、分子間的排列都大大的影響電晶體的效能,在此研究中發現,這種低能隙高分子材料藉由適當的製程參數調控,可以分別有電晶體電子和電洞的傳輸,若能在不同製程下最佳化各別的載子傳輸,就可以藉由不同製程使電子和電洞各有最佳的傳輸,在互補式金氧半導體的應用上有更創新的特性;對於電洞傳輸來看,元件本身的主要載子即為電洞傳輸,在製程中利用適當的退火溫度使高分子晶像排列較好,提升電洞的傳輸,除此之外,元件的雙極性特性在適當的攪藥環境及溫度條件下製備溶液,可以有效提升電子的傳輸,目的是藉由不同製程調控不同載子傳遞的趨勢。從分析中來看,使元件由電洞主導的單載子傳輸轉變為雙載子傳輸特性,是大氣中的水氧對主動層產生影響。綜合來說,藉由製程條件的調控以選擇不同主導載子的特性,將有助於擴展其在電子元件的應用面。


In this study, we investigate the ambipolar effect of organic thin film transistors which utilizing a highly transparent donor-acceptor polymer as active layer. The material is poly{2,6-4,8-di(5-ethylhexylthienyl) benzo [1,2-b;3,4-b] dithiophene-alt-5-dibutyloctyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4-dione (PBDTT-DPP) which is a low band gap conjugated polymer.
The performances of OTFT are tightly correlated with the morphology and chain-ordering of the semiconducting polymer layer. Tuning the parameter of fabrication process to orientate polymer chains and preparing materials in the appropriate annealing temperature will inject the unipolar charge transport individually which can develop more innovative features in CMOS application. For the major charge transport, hole transport, tuning the appropriate annealing temperature to improve the arrangement of polymer and the performance of transistor. Otherwise, the ambipolar characteristics of devices can be modulated through the variation of stirring condition and temperature of PBDTT-DPP solution, that can improve the transmission of electron. We found that oxidation and water in ambient might influence the active layer which conduce to the minor charge transport. To sum it up, controlling the characteristics of dominant carriers through the optimized process which is conducive to the development of electronic components.

目錄 中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 2 第二章 原理簡介與文獻回顧 7 2-1 有機半導體相關簡介 7 2-1-1 有機半導體發展 7 2-1-2 有機半導體傳導機制 11 2-2 有機薄膜電晶體概論 15 2-2-1 有機薄膜電晶體基本原理及架構 15 2-2-2 有機半導體材料簡介 18 2-2-3 有機薄膜電晶體之重要參數 20 2-3雙極性有機薄膜電晶體 24 2-3-1 雙極性有機電晶體簡介 24 2-3-2 雙極性有機電晶體材料介紹 29 第三章 有機元件製備與量測分析系統 34 3-1 儀器設備 34 3-2 實驗藥品與器材 35 3-3實驗步驟 36 3-3-1 基板圖案化流程 36 3-3-2 有機薄膜電晶體之製備 40 3-4元件電性測量與分析 44 3-4-1 半導體量測儀 (Semiconductor Device Parameter Analyzer) 44 3-4-2 原子力顯微鏡(Atomic Force Microscope, AFM) 45 3-4-3場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, FE-SEM) 46 3-4-4紫外-可見光分光光譜儀 (Ultraviolet/ Visible Spectrophotometer, UV/Vis) 47 3-4-5 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 49 3-4-6 X光繞射儀 (X-ray Diffraction, XRD) 51 3-4-7 差示掃描量熱法(Differential Scanning Calorimetry, DSC) 52 3-4-8熱重量分析儀(Thermogravimetric Analyzer, TGA) 52 3-4-9 傅立葉轉換紅外線光譜(Fourier Transform Infares Spectrometry, FTIR) 54 第四章 實驗結果與討論 56 4-1優化低能隙材料 PBDTT-DPP 薄膜電晶體之主要載子遷移率 58 4-1-1 初步分析製程環境對載子傳輸的影響 60 4-1-2 探討PBDTT-DPP退火溫度對電洞傳導的影響 65 4-1-3 PBDTT-DPP 退火溫度對電洞傳導之分析系統 70 4-2探討共軛高分子 PBDTT-DPP 對雙載子傳遞的特性 73 4-2-1 探討攪藥時間對元件雙載子傳遞特性之影響 74 4-2-2 不同攪藥環境下比較主動層以不同溫度退火對電子傳遞之調控 78 4-2-3 研究攪藥環境和退火溫度對主動層雙載子傳遞之影響 89 第五章 結論、未來方向與展望 98 參考文獻 99

1. Chiang, C.; Fincher Jr, C.; Park, Y.; Heeger, A.; Shirakawa, H.; Louis, E.; Gau, S.; MacDiarmid, A. G., Electrical Conductivity in Doped Polyacetylene. Physical Review Letters 1978, 40 (22), 1472.
2. Ye, R.; Baba, M.; Suzuki, K.; Ohishi, Y.; Mori, K., Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors. Thin Solid Films 2004, 464, 437-440.
3. Crone, B.; Dodabalapur, A.; Lin, Y.-Y.; Filas, R.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H.; Li, W., Large-scale complementary integrated circuits based on organic transistors. Nature 2000, 403 (6769), 521.
4. Torsi, L.; Farinola, G. M.; Marinelli, F.; Tanese, M. C.; Omar, O. H.; Valli, L.; Babudri, F.; Palmisano, F.; Zambonin, P. G.; Naso, F., A sensitivity-enhanced field-effect chiral sensor. Nature materials 2008, 7 (5), 412.
5. Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G., Organic field-effect transistor sensors: a tutorial review. Chemical Society Reviews 2013, 42 (22), 8612-8628.
6. Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature materials 2009, 8 (6), 494.
7. Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T., Printable elastic conductors with a high conductivity for electronic textile applications. Nature communications 2015, 6, ncomms8461.
8. Daami, A.; Bory, C.; Benwadih, M.; Jacob, S.; Gwoziecki, R.; Chartier, I.; Coppard, R.; Serbutoviez, C.; Maddiona, L.; Fontana, E. In Fully printed organic CMOS technology on plastic substrates for digital and analog applications, Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, IEEE: 2011; pp 328-330.
9. Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S., Diketopyrrolopyrrole–diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors. Journal of the American Chemical Society 2012, 134 (40), 16532-16535.
10. Torricelli, F.; Ghittorelli, M.; Smits, E. C.; Roelofs, C. W.; Janssen, R. A.; Gelinck, G. H.; Kovács‐Vajna, Z. M.; Cantatore, E., Ambipolar Organic Tri‐Gate Transistor for Low‐Power Complementary Electronics. Advanced Materials 2016, 28 (2), 284-290.
11. Sonar, P.; Singh, S. P.; Li, Y.; Soh, M. S.; Dodabalapur, A., A Low‐Bandgap Diketopyrrolopyrrole‐Benzothiadiazole‐Based Copolymer for High‐Mobility Ambipolar Organic Thin‐Film Transistors. Advanced materials 2010, 22 (47), 5409-5413.
12. Di, C.-A.; Liu, Y.; Yu, G.; Zhu, D., Interface engineering: an effective approach toward high-performance organic field-effect transistors. Accounts of chemical research 2009, 42 (10), 1573-1583.
13. Shockley, W., The Theory of p‐n Junctions in Semiconductors and p‐n Junction Transistors. Bell Labs Technical Journal 1949, 28 (3), 435-489.
14. Wanlass, F. M.; Sah, C. T., Nanowatt logic using field-effect metal-oxide semiconductor triodes. In Semiconductor Devices: Pioneering Papers, World Scientific: 1991; pp 637-638.
15. Pope, M.; Kallmann, H.; Magnante, P., Electroluminescence in organic crystals. The Journal of Chemical Physics 1963, 38 (8), 2042-2043.
16. Audenaert, M.; Gusman, G.; Deltour, R., Electrical conductivity of I 2-doped polyacetylene. Physical Review B 1981, 24 (12), 7380.
17. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters 1986, 49 (18), 1210-1212.
18. Barbe, D.; Westgate, C., Surface state parameters of metal-free phthalocyanine single crystals. Journal of Physics and Chemistry of Solids 1970, 31 (12), 2679-2687.
19. Wang, C. H.; Hsieh, C. Y.; Hwang, J. C., Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv Mater 2011, 23 (14), 1630-4.
20. Brown, A.; Jarrett, C.; De Leeuw, D.; Matters, M., Field-effect transistors made from solution-processed organic semiconductors. Synthetic metals 1997, 88 (1), 37-55.
21. Le Comber, P.; Spear, W., Electronic transport in amorphous silicon films. Physical Review Letters 1970, 25 (8), 509.
22. Horowitz, G.; Delannoy, P., An analytical model for organic‐based thin‐film transistors. Journal of Applied Physics 1991, 70 (1), 469-475.
23. Horowitz, G.; Hajlaoui, R.; Delannoy, P., Temperature dependence of the field-effect mobility of sexithiophene. Determination of the density of traps. Journal de Physique III 1995, 5 (4), 355-371.
24. Brown, A.; De Leeuw, D.; Havinga, E.; Pomp, A., A universal relation between conductivity and field-effect mobility in doped amorphous organic semiconductors. Synthetic Metals 1994, 68 (1), 65-70.
25. Vissenberg, M.; Matters, M., Theory of the field-effect mobility in amorphous organic transistors. Physical Review B 1998, 57 (20), 12964.
26. Kumar, B.; Kaushik, B. K.; Negi, Y., Perspectives and challenges for organic thin film transistors: materials, devices, processes and applications. Journal of Materials Science: Materials in Electronics 2014, 25 (1), 1-30.
27. Zaumseil, J.; Sirringhaus, H., Electron and ambipolar transport in organic field-effect transistors. Chemical reviews 2007, 107 (4), 1296-1323.
28. Mas-Torrent, M.; Rovira, C., Novel small molecules for organic field-effect transistors: towards processability and high performance. Chemical Society Reviews 2008, 37 (4), 827-838.
29. Meijer, E.; De Leeuw, D.; Setayesh, S.; Van Veenendaal, E.; Huisman, B.-H.; Blom, P.; Hummelen, J.; Scherf, U.; Klapwijk, T., Solution-processed ambipolar organic field-effect transistors and inverters. Nature materials 2003, 2 (10), 678.
30. Yuen, J. D.; Fan, J.; Seifter, J.; Lim, B.; Hufschmid, R.; Heeger, A. J.; Wudl, F., High performance weak donor–acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. Journal of the American Chemical Society 2011, 133 (51), 20799-20807.
31. Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C.-W.; Ho, P. K.-H.; Sirringhaus, H.; Friend, R. H., General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434 (7030), 194.
32. Yamamoto, T.; Yasuda, T.; Sakai, Y.; Aramaki, S., Ambipolar field‐effect transistor (FET) and redox characteristics of a π‐conjugated thiophene/1, 3, 4‐thiadiazole CT‐type copolymer. Macromolecular rapid communications 2005, 26 (15), 1214-1217.
33. Street, R.; Salleo, A., Contact effects in polymer transistors. Applied Physics Letters 2002, 81 (15), 2887-2889.
34. Kelley, T. W.; Baude, P. F.; Gerlach, C.; Ender, D. E.; Muyres, D.; Haase, M. A.; Vogel, D. E.; Theiss, S. D., Recent progress in organic electronics: Materials, devices, and processes. Chemistry of Materials 2004, 16 (23), 4413-4422.
35. Forrest, S. R., The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428 (6986), 911.
36. Bao, Z.; Dodabalapur, A.; Lovinger, A. J., Soluble and processable regioregular poly (3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility. Applied Physics Letters 1996, 69 (26), 4108-4110.
37. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S., High-performance semiconducting polythiophenes for organic thin-film transistors. Journal of the American Chemical Society 2004, 126 (11), 3378-3379.
38. Li, Y.; Sonar, P.; Singh, S. P.; Soh, M. S.; van Meurs, M.; Tan, J., Annealing-Free High-Mobility Diketopyrrolopyrrole− Quaterthiophene Copolymer for Solution-Processed Organic Thin Film Transistors. Journal of the American Chemical Society 2011, 133 (7), 2198-2204.
39. Ha, J. S.; Kim, K. H.; Choi, D. H., 2, 5-Bis (2-octyldodecyl) pyrrolo [3, 4-c] pyrrole-1, 4-(2 H, 5 H)-dione-Based Donor–Acceptor Alternating Copolymer Bearing 5, 5′-Di (thiophen-2-yl)-2, 2′-biselenophene Exhibiting 1.5 cm2· V–1· s–1 Hole Mobility in Thin-Film Transistors. Journal of the American Chemical Society 2011, 133 (27), 10364-10367.
40. Li, Y.; Singh, S. P.; Sonar, P., A High Mobility P‐Type DPP‐Thieno [3, 2‐b] thiophene Copolymer for Organic Thin‐Film Transistors. Advanced Materials 2010, 22 (43), 4862-4866.
41. Pron, A.; Rannou, P., Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in polymer science 2002, 27 (1), 135-190.
42. Katz, H. E., Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chemistry of Materials 2004, 16 (23), 4748-4756.
43. Facchetti, A., π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chemistry of Materials 2010, 23 (3), 733-758.
44. Hourquebie, P.; Olmedo, L., Influence of structural parameters of conducting polymers on their microwave properties. Synthetic Metals 1994, 65 (1), 19-26.
45. Nielsen, C. B.; Turbiez, M.; McCulloch, I., Recent Advances in the Development of Semiconducting DPP‐Containing Polymers for Transistor Applications. Advanced Materials 2013, 25 (13), 1859-1880.
46. Yuen, J. D.; Wudl, F., Strong acceptors in donor–acceptor polymers for high performance thin film transistors. Energy & Environmental Science 2013, 6 (2), 392-406.
47. Beaujuge, P. M.; Fréchet, J. M., Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. Journal of the American Chemical Society 2011, 133 (50), 20009-20029.
48. Su, Y.-W.; Lin, Y.-C.; Wei, K.-H., Evolving molecular architectures of donor–acceptor conjugated polymers for photovoltaic applications: from one-dimensional to branched to two-dimensional structures. Journal of Materials Chemistry A 2017, 5 (46), 24051-24075.
49. Wudl, F.; Kobayashi, M.; Heeger, A., Poly (isothianaphthene). The Journal of Organic Chemistry 1984, 49 (18), 3382-3384.
50. Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L., Stille polycondensation for synthesis of functional materials. Chemical reviews 2011, 111 (3), 1493-1528.
51. Chen, J.; Cao, Y., Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Accounts of chemical research 2009, 42 (11), 1709-1718.
52. Guo, C.; Hong, W.; Aziz, H.; Li, Y., Recent Progress in High Mobility Polymer Semiconductors for Organic Thin Film Transistors. Reviews in Advanced Sciences and Engineering 2012, 1 (3), 200-224.
53. Biniek, L.; Schroeder, B. C.; Nielsen, C. B.; McCulloch, I., Recent advances in high mobility donor–acceptor semiconducting polymers. Journal of Materials Chemistry 2012, 22 (30), 14803-14813.
54. Qu, S.; Tian, H., Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chemical Communications 2012, 48 (25), 3039-3051.
55. Farnum, D. G.; Mehta, G.; Moore, G. G.; Siegal, F. P., Attempted reformatskii reaction of benzonitrile, 1, 4-diketo-3, 6-diphenylpyrrolo [3, 4-C] pyrrole. A lactam analogue of pentalene. Tetrahedron Letters 1974, 15 (29), 2549-2552.
56. Hao, Z.; Iqbal, A., Some aspects of organic pigments. Chemical Society Reviews 1997, 26 (3), 203-213.
57. Kim, J. H.; Kim, K. H.; Lee, D. H.; Yang, D. S.; Heo, D. U.; Lee, T. W.; Cho, M. J.; Choi, D. H., 2, 5-Bis (2-octyldodecyl) pyrrolo [3, 4-c] pyrrole-1, 4-(2H, 5H)-dione-based donor-acceptor alternating copolymer bearing Benzothieno [3, 2-b] benzothiophene as an organic semiconductor and its application to thin film transistors. Molecular Crystals and Liquid Crystals 2013, 581 (1), 38-44.
58. Li, Y.; Sonar, P.; Singh, S. P.; Zeng, W.; Soh, M. S., 3, 6-Di (furan-2-yl) pyrrolo [3, 4-c] pyrrole-1, 4 (2H, 5H)-dione and bithiophene copolymer with rather disordered chain orientation showing high mobility in organic thin film transistors. Journal of Materials Chemistry 2011, 21 (29), 10829-10835.
59. Chen, Z.; Lee, M. J.; Shahid Ashraf, R.; Gu, Y.; Albert‐Seifried, S.; Meedom Nielsen, M.; Schroeder, B.; Anthopoulos, T. D.; Heeney, M.; McCulloch, I., High‐performance ambipolar diketopyrrolopyrrole‐thieno [3, 2‐b] thiophene copolymer field‐effect transistors with balanced hole and electron mobilities. Advanced materials 2012, 24 (5), 647-652.
60. Bronstein, H.; Chen, Z.; Ashraf, R. S.; Zhang, W.; Du, J.; Durrant, J. R.; Shakya Tuladhar, P.; Song, K.; Watkins, S. E.; Geerts, Y., Thieno [3, 2-b] thiophene− diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. Journal of the American Chemical Society 2011, 133 (10), 3272-3275.
61. Wallquist, O.; Lenz, R. In 20 years of DPP pigments–future perspectives, Macromolecular Symposia, Wiley Online Library: 2002; pp 617-630.
62. Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y., Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics 2012, 6 (3), 180.
63. Baeg, K. J.; Khim, D.; Jung, S. W.; Koo, J. B.; You, I. K.; Nah, Y. C.; Kim, D. Y.; Noh, Y. Y., Polymer Dielectrics and Orthogonal Solvent Effects for High‐Performance Inkjet‐Printed Top‐Gated P‐Channel Polymer Field‐Effect Transistors. ETRI Journal 2011, 33 (6), 887-896.
64. Strobl, G. R.; Strobl, G. R., The physics of polymers. Springer: 1997; Vol. 2.
65. Bennemann, C.; Donati, C.; Baschnagel, J.; Glotzer, S. C., Growing range of correlated motion in a polymer melt on cooling towards the glass transition. Nature 1999, 399 (6733), 246.
66. Root, S. E.; Alkhadra, M. A.; Rodriquez, D.; Printz, A. D.; Lipomi, D. J., Measuring the Glass Transition Temperature of Conjugated Polymer Films with Ultraviolet–Visible Spectroscopy. Chemistry of Materials 2017, 29 (7), 2646-2654.
67. Park, S.; Lim, B. T.; Kim, B.; Son, H. J.; Chung, D. S., High mobility polymer based on a π-extended benzodithiophene and its application for fast switching transistor and high gain photoconductor. Scientific reports 2014, 4, 5482.
68. Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J., A BDOPV‐Based Donor–Acceptor Polymer for High‐Performance n‐Type and Oxygen‐Doped Ambipolar Field‐Effect Transistors. Advanced Materials 2013, 25 (45), 6589-6593.
69. Guo, X.; Facchetti, A.; Marks, T. J., Imide-and amide-functionalized polymer semiconductors. Chemical reviews 2014, 114 (18), 8943-9021.

QR CODE