簡易檢索 / 詳目顯示

研究生: Lita Amalia
Lita Amalia
論文名稱: 基於培養皿演化作為隨機誘變的替代方法
Plate-Based Evolution as an Alternative Approach for Random Mutagenesis
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 李振綱
Cheng-Kang Lee
王勝仕
Sheng-Ren Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 97
中文關鍵詞: 隨機誘變趨化性子代噬菌體gIII半固體培養基
外文關鍵詞: random mutagenesis, chemotaxis, progeny phage, gIII, semi-solid medium
相關次數: 點閱:157下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Table of Contents Thesis Recommendation Form.........................................................................................i Qualification Form .......................................................................................................... ii Abstract ........................................................................................................................... iii Acknowledgment...............................................................................................................v List of Figures ............................................................................................................... viii List of Tables.....................................................................................................................x Abbreviation List.............................................................................................................xi Chapter 1 Introduction ....................................................................................................1 1.1. Research Background .........................................................................................1 1.2. Research Objective .............................................................................................2 1.3. Research Content and Proposed Method............................................................3 Chapter 2 Literature Review...........................................................................................5 2.1. Mutagenesis........................................................................................................5 2.2. State-of-the-art Technique in Mutagenesis ........................................................6 2.3. M13 Bacteriophage ............................................................................................7 2.4. PACE (Phage-Assisted Continuous Evolution) ...............................................10 2.5. Chemotaxis and CheZ Gene.............................................................................12 2.6. Mutagenesis Plasmid........................................................................................15 2.7. Green Fluorescent Protein................................................................................16 Chapter 3 Experimental Materials and Methods ........................................................19 3.1. 3.2. 3.3. 3.4. Bacteria and Plasmid........................................................................................20 Material ............................................................................................................21 Equipment and Instrumentation .......................................................................24 Methods............................................................................................................25 3.4.1. Plasmid Extraction (Miniprep) .............................................................25 3.4.2. Polymerase Chain Reaction (PCR).......................................................28 3.4.3. Gel Electrophoresis...............................................................................31 vi 3.4.4. DNA Recovery .....................................................................................33 3.4.5. Restriction Digestion ............................................................................33 3.4.6. DNA Ligation .......................................................................................34 3.4.7. Competent Cell Preparation..................................................................35 3.4.8. Transformation .....................................................................................37 3.4.9. Electrocompetent Cell Preparation .......................................................38 3.4.10. Electroporation/Electro-transformation................................................39 3.4.11. SDS-PAGE ...........................................................................................40 3.4.12. Phage Assembly and Amplification .....................................................44 3.4.13. Bacteriophage Plaque Assay (Phage Titer) ..........................................46 3.4.14. Evolution Plate......................................................................................47 3.4.15. Evolution Plate Recovery .....................................................................50 3.4.16. GFP-Reporter Assay.............................................................................51 Chapter 4 Results and Discussion .................................................................................53 4.1. Plasmid Construction .......................................................................................53 4.1.1. Modification of Accessory Plasmid .....................................................53 4.1.2. Construction of Reporter Plasmid ........................................................55 4.2. Expression of Selection Pressure .....................................................................60 4.3. SDS-PAGE.......................................................................................................64 4.4. Phage Amplification, Titer and Infect Test......................................................66 4.5. Evolution Plate.................................................................................................69 4.5.1. Bacteria chemotaxis .............................................................................70 4.5.2. Mutagenesis..........................................................................................72 Chapter 5 Conclusion .....................................................................................................79 Reference .........................................................................................................................80

[1] R. E. Cobb and H. Zhao, "Directed Evolution: Past, Present and Future," AIChE Journal, vol. 59, no. 5, pp. 1432-1440, 2013.
[2] C. A. Darwin, Origin of Specied by Means of Natural Selection, John Murray, 1859.
[3] F. Papale, J. Saget and E. Bapteste, "Networks Consolidate the Core Concepts of Evolution by Natural Selection," Trends in Microbiology, vol. 28, no. 4, pp. 254- 265, 2020.
[4] V. Sachsenhauser and J. C. Bardwell, "Directed Evolution to Improve Protein Folding In Vivo," Current Opinion in Structural Biology, vol. 48, pp. 117-123, 2018.
[5] A. K. Brodel, M. Isalan and A. Jaramillo, "Engineering of biomolecules by bacteriophage directed evolution," Elsevier, vol. 51, pp. 32-38, 2018.
[6] F. H. Arnold, "Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture)," Angew. Chem. Int, vol. 58, pp. 14420-14426, 2019.
[7] A. H. Badran and D. R. Liu, "Development of potent in vivo mutagenesis plasmids with broad mutational spectra," Nature Communications, vol. 6, no. 8425, 2015.
[8] J. Y. Kim, H.-W. Yoo, P.-G. Lee, S.-G. Lee, J.-H. Seo and N.-G. Kim, "In vivo Protein Evolution, Next Generation Protein Engineering Strategy: from Random Approach to Target-specific Approach," Biotechnology and Bioprocess Engineering, vol. 24, pp. 85-94, 2019.
[9] M. Packer, H. Rees and D. Liu, "Phage-assisted continuous evolution of proteases with altered substrate specificity," Nature Communications, vol. 8, p. 956, 2017.
[10] S. O. Halperin, C. Tou, E. B. Wong, C. Modavi, D. V. Schaffer and J. Dueber, "CRISPR-guided DNA polymerases enable diversification of all nucleotide in a tunable window," Nature, vol. 1, 2018.
[11] K. M. Esvelt, J. C. Carlson and D. R. Liu, "A system for the continuous directed evolution of biomolecules," Nature, vol. 472, pp. 499-503, 2011.
[12]M. E. Ortiz and D. Endy, "Engineered cell-cell communication via DNA messaging," Journal of Biological Engineering, vol. 6, no. 16, 2012.
[13] A. M. Leconte, B. C. Dickinson, D. D. Yang, I. A. Chen, B. Allen and D. R. Liu, "A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes," ACS Biochemistry, vol. 52, pp. 1490-1499, 2013.
[14] P. Baker and S. Y. Seah, "Rational approaches for engineering novel functionalities in carbon-carbon bond forming enzymes," Computational and Structural Biotechnology Journal, vol. 2, no. 3, 2012.
80
[15] M. S. Packer and D. R. Liu, "Methods for the directed evolution of proteins," Nature Reviews, vol. 15, pp. 379-394, 2015.
[16] K. Chen and F. Arnold, "Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media," Nature Biotechnology, vol. 9, pp. 1073-1077, 1991.
[17] K. Mullis. Cetus Corp. Patent US Patent No. US4683202A, 1985.
[18] H. Kano, S. Taguchi and H. Momose, "Cold adaptation of mesophilic serine protease, subtilisin, by in vitro random mutagenesis," Appl Microbiol Biotechnol, vol. 47, pp. 46-51, 1997.
[19] J.-H. Zhang, G. Dawes and W. P. Stemmer, "Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening," Proc. Natl. Acad. Sci. USA, vol. 94, pp. 4504-4509, 1997.
[20] A. H. Badran, V. M. Guzov, Q. Huai, M. M. Kemp, P. Vishwanath, W. Kain, A. M. Nance, A. Evdokimov, F. Moshiri, K. H. Turner, P. Wang, T. Malvar and D. R. Liu, "Continuous evolution of Bacillus thuringiensis toxins overcome insect resistance," Nature, vol. 533, pp. 58-63, 2016.
[21] A. D. Garst, M. C. Bassalo, G. Pines, S. A. Lynch, A. L. Halweg-Edwards, R. Liu, L. Liang, Z. Wang, R. Zeitoun, W. G. Alexander and R. T. Gill, "Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering," Nature Biotechnology, vol. 35, pp. 48-55, 2017.
[22] J. Rakonjac, N. Bennet, J. Spagnuolo, D. Gagic and M. Russel, "Filamentous bacteriophage: biology, phage display and nanotechnology applications," Current Issues in Molecular Biology, vol. 13, no. 2, pp. 51-75, 2011.
[23] J. Koolman and K.-H. Roehm, Color Atlas of Biochemistry, 2nd Edition ed., New York: Thieme, 2005.
[24] S. W. Smeal, M. A. Schmitt, R. R. Pereira, A. Prasad and J. D. Fisk, "Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation," Virology, vol. 500, pp. 259-274, 2017.
[25] J. W. Kehoe and B. K. Kay, "Filamentous phage display in the New Millennium," Chem. Rev, vol. 105, pp. 4056-4072, 2005.
[26] J. Rakonjac and P. Model, "Roles of pIII in filamentous phage assembly," J. Mol. Biol., vol. 282, pp. 25-41, 1998.
[27]J. Lopez and R. Webster, "Morphogenesis of filamentous bacteriophage f1: orientation of extrusion and production of polyphage," Virology, vol. 127, pp. 177- 193, 1983.
81

[28] C. Barbas, D. Burton, J. Scott and G. Silverman, Phage Display: A Laboratory Manual, New York: Cold Spring Harbor, 2001.
[29] T. Wang, A. H. Badran, T. P. Huang and D. R. Liu, "Continuous directed evolution of proteins with improved soluble expression," Nature Chemical Biology, vol. 14, pp. 972-980, 2018.
[30] B. W. Thuronyi, L. W. Koblan, J. M. Levy, W.-H. Yeh, C. Zheng, G. A. Newby, C. Wilson, M. Bhaumik, O. Shubina-Oleinik, J. R. Holt and D. R. Liu, "Continuous evolution of base editors with expanded target compatibility and improved activity," Nature Biotechnology, vol. 37, pp. 1070-1079, 2019.
[31] X. Ye, M. Tu, M. Piao, L. Yang , Z. Zhou, Z. Li, M. Lin, Z. Yang and Z. Zuo, "Using phage-assisted continuous evolution (PACE) to evolve human PD1," Experimental Cell Research, vol. 396, no. 112244, 2020.
[32]B. Dickinson, A. Leconte, B. Allen, K. Esvelt and D. Liu, "Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution," Proc Natl Acad Sci USA, vol. 110, no. 9007- 12, 2013.
[33] V. Sourjik and N. S. Wingreen, "Responding to chemical gradients: bacterial chemotaxis," Current Opinion in Cell Biology, vol. 24, pp. 262-268, 2012.
[34] T. Jin, "Gradient sensing during chemotaxis," Current Opinion in Cell Biology, vol. 25, pp. 532-537, 2013.
[35] K. Wuichet and I. Zhulin , "Origin and diversification of a complex signal transduction system in prokaryotes," Sci Signal, vol. 3, no. ra50, 2010.
[36] N. Darnton, L. Turner, S. Rojevsky and H. Berg, "On torque and tumbling in swimming Escherichia coli," J Bacteriol, vol. 189, pp. 1756-1764, 2007.
[37]G. Micali and R. G. Endres, "Bacterial chemotaxis: information processing, thermodynamics, and behavior," Current Opinion in Microbiology, vol. 30, pp. 8- 15, 2016.
[38] J. Parkinson, G. Hazelbauer and J. Falke , "Signaling and sensory adaptation in Escherichia coli chemoreceptors," Trends Microbiol, vol. 23, no. 5, pp. 257-266, 2015.
[39] N. Barkai and S. Leibler, "Robustness in simple biochemical networks to transfer and process information," Nature, vol. 387, pp. 913-917, 1997.
[40] A. Salah Ud-Din and A. Roujeinikova, "Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea," Cell. Mol. Life Sci., vol. 74, no. 18, pp. 3293-3303, 2017.
82

[41] S. C. Kuo and D. E. Koshland, "Roles of cheY and cheZ gene products in controlling flagellar rotation in bacterial chemotaxis of Escherichia coli," Journal of Bacteriology, vol. 169, no. 3, pp. 1307-1314, 1987.
[42] J. H. Hu, S. M. Miller, M. H. Geurts, W. Tang, L. Chen, N. Sun, C. M. Zeina, X. Gao, H. A. Rees, Z. Lin and D. R. Liu, "Evolved Cas9 variants with broad PAM compatibility and high DNA specificity," Nature, vol. 556, no. 7699, pp. 57-63, 2018.
[43] A. K. Brodel, R. Rodrigues, A. Jaramillo and M. Isalan, "Accelerated evolution of a minimal 63-amino acid dual transcription factor," Science Advances, vol. 6, no. 24, 2020.
[44] I. J. Fijalkowska and R. M. Schaaper, "Mutants in the Exo I motif of Escherichia coli dnaQ: Defective proofreading and inviability due to error catastrophe," Proc. Natl. Acad. Sci. USA, vol. 93, pp. 2856-2861, 1996.
[45] A. Lobner-Olesen, M. Marinus and F. Hansen, "Role of seqA and dam in Escherichia coli gene expression: a global/microarray analysis," Proc. Natl. Acad. Sci. USA, vol. 100, pp. 4672-4677, 2003.
[46] J. P. Horst, T. H. Wu and M. G. Marinus, "Escherichia coli mutator genes," Trends in Microbiology, vol. 7, no. 1, pp. 29-36, 1999.
[47] H. Yang , E. Wolff, M. Kim, A. Diep and J. H. Miller, "Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach," Molecular Microbiology, vol. 53, no. 1, pp. 283-295, 2004.
[48] L. Olga, K. Lewis and A. Matin, "EmrR is a negative regulator of the Escherichia coli multidrug resistance pump emrAB," Journal of Bacteriology, vol. 177, no. 9, pp. 2328-2334, 1995.
[49] A. Lada, C. F. Krick, S. Kozmin, V. Mayorov, T. Karpova, I. Rogozin and Y. Pavlov, "Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast," Biochemistry (Mosc), vol. 76, no. 1, pp. 131-146, 2011.
[50] M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward and D. C. Prasher, "Green Fluorescent Protein as a Marker for Gene Expression," Science, vol. 263, pp. 802- 805, 1994.
[51] W. W. Ward, C. W. Cody, R. C. Hart and M. J. Cormier, "Spectrophotometric Identity of The Energy Transfer Chromophores in Renilla and Aequorea Green- fluorescent Proteins," Photochemistry and Photobiology, vol. 31, pp. 611-615, 1980.
[52] A. Kumar and D. Pal, "Green fluorescent protein and their applications in advance research," Journal of Research in Engineering and Applied Sciences, vol. 01, no. 01, pp. 42-46, 2016.
83

[53] S. Deo and S. Daunert, "Luminescent proteins from Aequorea victoria: application in drug discovery and in high throughput analysis," Fresenious Journal of Analytical Chemistry, vol. 369, no. 1, pp. 258-266, 2001.
[54] F. Yang, L. Moss and J. G. Phillips, "The molecular structure of green fluorescent protein," Nature Biotechnology, vol. 14, pp. 1246-1251, 1996.
[55] M. Ormo, A. Cubitt, K. Kallio, L. Gross, R. Tsien and S. Remington, "Crystal structure of the Aequorea victoria green fluorescent protein," Science, vol. 273, pp. 1392-1395, 1996.
[56] M. A. Rizzo, M. W. Davidson and D. W. Piston, "Fluorescent protein tracking and detection: fluorescent protein structure and color variants," Cold Spring Harb Protoc, vol. 4, no. 12, 2009.
[57] N. C. Shaner, P. A. Steinbach and R. Y. Tsien, "A guide to choosing fluorescent proteins," Nature Methods, vol. 2, no. 12, pp. 905-909, 2005.
[58]A. Cubitt, L. Woollenweber and R. Heim, "Understanding structure-function relationships in the Aequorea victoria green fluorescent protein," Methods Cell Biol, vol. 58, pp. 19-30, 1999.
[59] R. Tsien, "The green fluorescenct protein," Annu. Rev. Biochem, vol. 67, pp. 509- 544, 1998.
[60] "OpenWetWare," 16 October 2020. [Online]. Available: https://openwetware.org/wiki/E._coli_genotypes#DH5.CE.B1.
[61] Addgene, Plasmids 101: A Desktop Resource 3rd Edition, 2017.
[62] C. Yi, "A system for phage assisted autonomous continuous directed evolution," NTUST, Taipei, 2019.
[63] S. Tan, "A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli," Protein Expres. Purif., vol. 21, pp. 224-234, 2001.
[64] H. A. De Boer, L. J. Comstock and M. Vasser, "The tac promoter: A functional hybrid derived from the trp and lac promoters," Proc. Natl. Acad. Sci. USA, vol. 80, pp. 21-25, 1983.
[65] R. Sousa and S. Mukherjee, "T7 RNA polymerase," Prog. Nucleic Acid Res. Mol. Biol. , vol. 73, pp. 1-41, 2003.
[66] S. Borkotoky and A. Murali, "The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm," International Journal of Biological Macromolecules, vol. 118, pp. 49-56, 2018.
[67] J. Guillerez, P. J. Lopez, F. Proux, H. Launay and M. Dreyfus, "A mutation in T7 RNA polymerase that facilitates promoter clearance," PNAS, vol. 102, no. 17, pp. 5958-5963, 2005.
84

[68] Y. Yin and T. Steitz, "Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase," Science, vol. 298, pp. 1387-1395, 2002.
[69] C. Pommie, S. Levadoux, R. Sabatier, G. Lefranc and M.-P. Lefranc, "IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties," Journal of Molecular Recognition, vol. 17, pp. 17-32, 2004.

無法下載圖示 全文公開日期 2026/01/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE